人工智能算法有没有学习的必要?

人工智能算法有没有学习的必要

这是一个很多人都比较关心的问题,作为一名IT从业者,我来回答一下。首先,不论是从事人工智能平台的研发,还是从事人工智能技术的行业应用开发,算法知识都是一个学习的重点内容,因为从当前的人工智能技术体系来看,不论是从事计算机视觉,还是自然语言处理,算法都是核心,掌握算法也能够明显提升自身对于人工智能技术的认知能力。

从事人工智能产品的研发,对于算法知识的要求是非常高的,研发人员要具备算法设计能力,同时要能够完成算法实现、算法训练、算法验证等一系列环节,可以说当前的人工智能研发说到底就是以算法设计为基础来进行的。随着人工智能平台的落地应用,未来很多开发人员会基于人工智能平台来进行行业应用创新,这种情况对于开发人员的算法知识要求并不算高,开发人员可以借助于人工智能平台的支撑,来完成技术与行业的结合。

基于人工智能平台来进行人工智能产品开发,需要重视编程语言、人工智能平台和业务知识的学习,但是这并不意味着算法不需要掌握了,实际上掌握一定的算法知识,能够更加充分地发挥出人工智能平台的功能。学习算法知识可以循序渐进,对于数学基础比较薄弱的人来说,可以先补学一些线性代数和概率论方面的知识,然后从一些比较经典的算法开始学起,比如决策树、朴素贝叶斯、K-mean等等。

在学习这些经典算法的过程中,还应该结合具体的实验来进行,比如可以基于Python语言来完成算法的实现,然后进一步完成算法训练、验证和应用的过程。最后,学习算法知识对于实验场景的要求往往比较高,所以建议在学习算法知识的过程中,最好能够为自己营造一个较好的实验和交流环境。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。

网络深度,网络越深,模型性能越好吗?

网络深度,网络越深,模型性能越好吗

越深越好的想法可能更多来自ResNet类的结构,这种结构实际上是把离散的网络连续化了,网络深度和残差块的修正幅度之间是可以互补的,实际就是微分方程差分化中的时间片大小和每个时间片上的行进步长的互补。但是对于一般的CNN结构的网络,这个互补调整能力要弱很多,所以过深的网络相对于ResNet收敛更困难。 总之一句话,复杂度是一切的核心。

机器学习算法工程师面试需要做那些准备?

机器学习算法工程师面试需要做那些准备

备战机器学习工程师面试,你需要掌握这些经典面试题金九银十,又到了就业旺季,互联网公司的秋招如火如荼的进行着。机器学习类岗位依然非常热门且高薪,但想在竞争激烈的面试中杀出重围,必须有充足的准备。如何能够短时间内抓住机器学习知识的技术重点,集中突击? 如何不再惧怕“算法”? 如何才能在面试中对答如流,打造属于自己的“offer收割机”?刷题是必不可少的步骤。

应聘前,你需要了解的内容有:机器学习的基本概念和分类(训练/测试数据、监督/非监督学习等)、经典的机器学习模型(支持向量机、朴素贝叶斯、随机森林等)、深度学习模型(卷积神经网络、循环神经网络、生成式对抗网络等);特征工程(特征组合、特征选择等),模型评估(评价指标、超参数的选择等),优化算法(损失函数、梯度下降等),数学基础(概率论、线性代数等),工程能力(数据结构与算法、机器学习平台等),业务与应用(计算机视觉、自然语言处理等)。

跟题主分享几个超级高频的机器学习面试题,希望能祝你一臂之力!Q1:如何对贝叶斯网络进行采样 (8.6)对一个没有观测变量的贝叶斯网络进行采样,最简单的方法是祖先采样(Ancestral Sampling),它的核心思想是根据有向图的顺序,先对祖先节点进行采样,只有当某个节点的所有父节点都已完成采样,才对该节点进行采样。

以场景描述中的图8.9 为例,先对Cloudy 变量进行采样,然后再对Sprinkler 和Rain 变量进行采样,最后对WetGrass 变量采样,如图8.10 所示(图中绿色表示变量取值为True,红色表示取值为False)。根据贝叶斯网络的全概率公式可以看出祖先采样得到的样本服从贝叶斯网络的联合概率分布。

如果只需要对贝叶斯网络中一部分随机变量的边缘分布进行采样, 可以用祖先采样先对全部随机变量进行采样,然后直接忽视那些不需要的变量的采样值即可。由图可见,如果需要对边缘分布p(Rain) 进行采样,先用祖先采样得到全部变量的一个样本,如(Cloudy=T, Sprinkler=F,Rain=T,WetGrass=T),然后忽略掉无关变量,直接把这个样本看成是Cloudy=T 即可。

接下来考虑含有观测变量的贝叶斯网络的采样,如图8.11 所示。网络中有观测变量(Sprikler=T,WetGrass=T)(观测变量用斜线阴影表示),又该如何采样呢?最直接的方法是逻辑采样,还是利用祖先采样得到所有变量的取值。如果这个样本在观测变量上的采样值与实际观测值相同,则接受,否则拒绝,重新采样。

这种方法的缺点是采样效率可能会非常低,随着观测变量个数的增加、每个变量状态数目的上升,逻辑采样法的采样效率急剧下降,实际中基本不可用。因此,在实际应用中,可以参考重要性采样的思想,不再对观测变量进行采样,只对非观测变量采样,但是最终得到的样本需要赋一个重要性权值:其中E 是观测变量集合。这种采样方法称作似然加权采样(Likelihood Weighted Sampling),产生的样本权值可以用于后续的积分操作。

人工智能、机器学习和深度学习的区别是什么

先来一张图镇楼:人工智能  从广义上讲,人工智能描述一种机器与周围世界交互的各种方式。通过先进的、像人类一样的智能——软件和硬件结合的结果——一台人工智能机器或设备就可以模仿人类的行为或像人一样执行任务。机器学习  机器学习是人工智能的一种途径或子集,它强调“学习”而不是计算机程序。一台机器使用复杂的算法来分析大量的数据,识别数据中的模式,并做出一个预测——不需要人在机器的软件中编写特定的指令。

在错误地将奶油泡芙当成橙子之后,系统的模式识别会随着时间的推移而不断改进,因为它会像人一样从错误中吸取教训并纠正自己。深度学习  深度学习是机器学习的一个子集,推动计算机智能取得长足进步。它用大量的数据和计算能力来模拟深度神经网络。从本质上说,这些网络模仿人类大脑的连通性,对数据集进行分类,并发现它们之间的相关性。

如果有新学习的知识(无需人工干预),机器就可以将其见解应用于其他数据集。机器处理的数据越多,它的预测就越准确。人工智能是一类非常广泛的问题,机器学习是解决这类问题的一个重要手段。深度学习则是机器学习的一个分支。在很多人工智能问题上,深度学习的方法突破了传统机器学习方法的瓶颈,推动了人工智能领域的发展。

是否可以通过增加神经网络的深度来提高其性能?

深度学习的根本理论问题之一是「深度有何作用」?虽然增加神经网络的层数可以提高其性能,但是训练和优化的难度也随之增加。本文却给出了一个相反观点,有时增加深度反而可以加速网络优化;同时提出端到端更新规则,证明深度网络过度的参数化(overparameterization)也可能是件好事。深度学习理论中有一个根本的问题:即「网络的深度有何作用?」传统观点(如:Eldan


文章TAG:
下一篇