1,伺服驱动器的阻尼减振是什么意思

伺服驱动器,是用来控制伺服电机的一种控制器,本身应该是不带振动的,不知道你想问的是不是伺服驱动器连接是私服电机的阻尼减振。固体振动时,使固体振动的能量尽可能多地耗散在阻尼层中的方法,称为阻尼减振。阻尼是指阻碍物体的相对运动、并把运动能量转化为热能或其他可以耗散能量的一种作用。阻尼减振有很多种方法,比如阻尼弹簧,橡胶减振垫、阻尼器等
期待看到有用的回答!

伺服驱动器的阻尼减振是什么意思

2,什么是减震器的阻尼状态

减振器的结构是带有活塞的活塞杆插入筒内,在筒中充满油。活塞上有节流孔,使得被活塞分隔出来的两部分空间中的油可以互相补充。阻尼就是在具有粘性的油通过节流孔时产生的,节流孔越小,阻尼力越大,油的黏度越大,阻尼力越大。如果节流孔大小不变,当减振器工作速度快时,阻尼过大会影响对冲击的吸收。因此,在节流孔的出口处设置一个圆盘状的板簧阀门,当压力变大时,阀门被顶开,节流孔开度变大,阻尼变小。由于活塞是双向运动的,所以在活塞的两侧都装有板簧阀门,分别叫做压缩阀和伸张阀。
当达到平衡状态时 再进一步压缩时的状态

什么是减震器的阻尼状态

3,什么叫 阻尼减震

固体振动时,使固体振动的能量尽可能多地耗散在阻尼层中的方法,称为阻尼减震。阻尼是指阻碍物体的相对运动、并把运动能量转化为热能或其他可以耗散能量的一种作用。安置在结构系统上的“特殊”构件可以提供运动的阻力,耗减运动能量的装置,我们称为阻尼器。扩展资料:阻尼减震优点1、铸钢外壳,采用合金钢弹簧,并经喷塑处理,耐候性佳,有效增加使用寿命,防震效果好。2、顶部、底部均采用防滑耐磨橡胶以及固定螺栓,安全性能大大提高,安装方便。3、能够有效隔离各类卧式、立式水泵、风机、空调机组、发电机组、柴油机组、管道、等动力设备的振动,并保护及延长其使用寿命。参考资料来源:搜狗百科-阻尼减震器参考资料来源:搜狗百科-阻尼器
固体振动时,使固体振动的能量尽可能多地耗散在阻尼层中的方法,称为阻尼减震。阻尼是指阻碍物体的相对运动、并把运动能量转化为热能或其他可以耗散能量的一种作用。阻尼的作用主要有以下五个方面:(1)阻尼有减小机械结构的共振振幅,从而避免结构因动应力达到极限造成结构破坏。(2)阻尼有助于机械系统受到瞬间冲击后,很快恢复到稳定状态。(3)阻尼有减少因机械振动所产生的声辐射,降低机械性噪声。(4)可以提高各类机床、仪器等的加工精度、测量精度和工作精度。各类机器尤其是精密机床,在动态环境下工作需要有较高的抗震性和动态稳定性,通过各种阻尼处理可以大大提高其动态性能。(5)阻尼有助于降低结构传递振动的能力。

什么叫 阻尼减震

4,阻尼减震器和弹簧减震器和减震器的区别

你好!阻尼减振器和弹簧减震器没有什么区别的,只不过阻尼减振器更耐用
弹簧并不具有减震的作用(如果没有阻尼,受到一次冲击后弹簧会一直循环往复拉伸压缩),只有有阻尼的部件才能减震,弹簧在往复拉伸压缩的过程中阻尼材料吸收能量,衰减振动,通常所说的弹簧减震器是弹簧和阻尼器的组合体。
阻尼减震器和减震器的叫法是很笼统的,包含的产品类型太多了;弹簧减震器就比较好理解;弹簧减震器是通过减震,弹簧的刚度及弹簧预压缩的初始力,以减少或消除管道由于介质的不规则流称,风力作用,水锤(或汽锤)以及地震等原因引起的周期振动或瞬时冲击,它可提高整个管系的固有振动频率,使之离开因外界干扰引起的管道强迫振动频率,从而避免管道共振现象,并减少管道由于振动产生的附加应力。减震弹簧规格的选择取决于防止管道振动所需要的防振力大小,如果可以根据管道的质量,刚度以及外界作用于管道的周期性或冲击力,通过管道动力分析计算出所需的防振力的话,则应按照计算的精确值选择减震弹簧的规格并确定弹簧预压的初始力。否则,可根据管道的公称直径选择减震弹簧的规格。弹簧减振器是一种对位移反应灵敏的振动控制装置;弹簧减振器主要适用于核电厂、火电厂、化工厂、钢铁厂等的管道及设备的抗振动。常用于控制挂续性的流体振动激扰(如流体脉动、两相流、高速流和风振等)的管系振动。
你好,弹性阻尼减振器就是普通的减震器,而阻尼弹簧减震器是阻尼弹簧式的!

5,阻尼减震性是什么要详细

网上粘贴复制的我就不找了据我了解阻尼减震是避震筒里面的油里面密布了有磁性的碎屑一样的东西在一定情况下(比如通电)碎屑一样的东西可以排列不一样排列随外界迅速条件变化而迅速变化,从而导致筒里的油可压缩性不一样这样避震器的软硬也变化举个例:汽车在过减速带的时候车轮刚上减速带的时候我们希望避震软一点(可压缩性大一点),底盘给悬挂一个信号,使避震筒的油有压缩性大一点,这样冲击力就小。车轮过了减速带,要下落的时候,这时候,避震器要尽量硬一点,弹性强一点,以免车辆像船一样颠簸,于是底盘给悬挂一个信号,使碎屑重新排列,使悬挂筒里的油变的难以压缩这样过减速带车辆的舒适性和可操控性大大提高。
阻尼是指任何振动系统在振动中,由于外界作用或系统本身固有的原因引起的振动幅度逐渐下降的特性,以及此一特性的量化表征。阻尼的作用(1)阻尼有助于机械系统受到瞬时冲击后,很快恢复到稳定状态;   (2)阻尼有助于减少因机械振动产生的声辐射,降低机械性噪声。许多机械构件,如交通运输工具的壳体、锯片的噪声,主要是由振动引起的,采用阻尼能有效的抑制共振,从而降低噪声; (3)阻尼有助于减少机械结构共振振幅,从而避免结构因震动应力达到极限造成机构破坏;  (4)阻尼有助于降低结构传递振动的能力。在机械系统的隔振结构设计中,合理地运用阻尼技术,可使隔振、减振的效果显著提高;  (5)可以提高各类机床、仪器等的加工精度、测量精度和工作精度。各类机器尤其是精密机床,在动态环境下工作需要有较高的抗震性和动态稳定性,通过各种阻尼处理可以大大的提高其动态性能。

6,何谓阻尼减振阻尼减振的形式有哪些

阻尼减震的基本原理固体振动时,使固体振动的能量尽可能多地耗散在阻尼层中的方法,称为阻尼减震。阻尼是指阻碍物体的相对运动、并把运动能量转化为热能或其他可以耗散能量的一种作用。阻尼的作用主要有以下五个方面:(1)阻尼有减小机械结构的共振振幅,从而避免结构因动应力达到极限造成结构破坏。(2)阻尼有助于机械系统受到瞬间冲击后,很快恢复到稳定状态。(3)阻尼有减少因机械振动所产生的声辐射,降低机械性噪声。(4)可以提高各类机床、仪器等的加工精度、测量精度和工作精度。各类机器尤其是精密机床,在动态环境下工作需要有较高的抗震性和动态稳定性,通过各种阻尼处理可以大大提高其动态性能。(5)阻尼有助于降低结构传递振动的能力。从物理现象上区分,阻尼大致可分为以下6类:(1)工程材料内阻尼工程材料种类繁多,尽管其耗能的微观机制有差异,宏观效应却基本相同,都表现为对振动系统具有阻尼作用,因这种阻尼起源于介质内部,故称为工程材料内阻尼。(2)液体的黏滞阻尼在实际工程中,各种结构往往与流体相接触,而大部分流体都具有一定黏滞性,当这些结构相对其周围流体介质运动时,后者给前者以运动阻力,对振动物体做负功,使其损失一部分机械能,这些机械能最终转变为热能。(3)结构阻尼与库仑摩擦阻尼相互压紧的两个表面有滑动趋势,或者出现相对滑动时,这两个表面上立即产生一对方向相反的力,这就是干摩擦力,也叫做库仑阻尼力。(4)冲击阻尼冲击阻尼是另一种结构耗能方式。工程中可以通过设置冲击阻尼器来获得冲击阻尼,例如砂、细石、铅丸或其他金属块、以至于硬质合金等,均可用做冲击块,以获得冲击阻尼。(5)辐射阻尼当振动物体带动周围连续介质运动时,振动物体的一部分运动能量以波的形式传播出去。这些能量的绝大部分不再回到振动物体上,因此,振动物体损失了这部分能量,其宏观表现相当于存在做负功的阻尼力,这就是辐射阻尼。(6)磁电效应阻尼机械能转变为电能的过程中,由磁电效应产生阻尼,家用电度表中阻尼结构实质上就是机械能与电能的转换器,它产生的磁电效应可以称之为涡流阻尼。阻尼减震的简要原理是,阻尼可使沿结构传递的振动能量衰减,还可以减弱共振频率附近的振动。常用的阻尼材料是那些具有显著内损耗、内摩擦的材料,典型的如沥青、橡胶以及其他一些高分子材料

7,避震器的阻尼值是什么怎样调节

减震器的阻尼值的大小,代表车子的舒适性。不是所有的减震器都可以调节,如果车子太颠了,减震效果不好。那我把那个阻尼值调小一点。如果感觉车子减震太软,可以把调大一点。说白了就是调节弹簧的压缩长度。
植物生长激素 植物激素 概念:植物体内合成的,并能从产生之处运送到别处,对植物生长发育产生显著作用的有机化学物质。 植物激素种类:目前得到普遍公认的有生长素类、赤霉素类、细胞分裂素类、脱落酸和乙烯五大类。除此之外,还有芸薹素、月光素和多胺素等也具有生长物质活性。 植物激素特点: 1、内生的。它是植物生活动过程中的正常代谢产物。也称为内源激素。 2、能移动的。即从产生部位或合成器官经运输到靶器官起作用。 3、非营养物质。它在体内含量低,但对代谢过程起极大的调节作用。微克级 一、生长素 (一)发现 生长素是发现最早的植物激素。 1872年波兰的西斯勒克发现水平根弯曲生长是受重力影响,感应部位在根尖,因而推测根尖向根基传导刺激性物质。 1880年英国达尔文父子进行了胚芽鞘向光性试验,证实单侧光影响胚芽鞘尖产生刺激并传递。 1928年荷兰人温特证明胚芽鞘确有物质传递,并首先在鞘尖上分离了与生长有关的物质。 1934年荷兰人郭葛分离纯粹的激素,经鉴定为吲哚乙酸,简称iaa (二)分布和运输 生长素在植物体内分布广,但主要分布在生长旺盛和幼嫩的部位。如:茎尖、根尖、受精子房等。 运输存在极性运输(只能从形态学上端向下端运输而不能反向运输)和非极性运输现象。在茎部是通过韧皮部,胚芽鞘是薄壁细胞,叶片中则是在叶脉。 (三)生理作用 1、促进植物生长 生长素能促进营养器官的伸长,在适宜浓度下对芽、茎、根细胞的伸长有明显的促进作用。不同器官适宜的激素浓度不一样,浓度增大反而会起抑制作用。一般茎端最高,芽次之,根最低。 2、生长素还能促进细胞分裂、果实发育和单性结实、保持顶端优势、愈伤组织的产生,子房膨大和无子果实,插枝生根、器官脱落等有关。 二、赤霉素 (一)发现 1926年日本黑泽英一在研究引起水稻植株徒长的恶苗病时发现的。恶苗病是一种由名为赤霉菌的分泌物引起的水稻苗徒长且叶片发黄,易倒伏,赤霉素因此而得名。 1938年日本薮田贞次提取之,为赤霉酸ga 3。 1959年鉴定出化学结构。 到目前为止,各种植物中均发现有赤霉素存在。根据报道,从低等到高等植物中已分离的赤霉素百余种,做过化学结构鉴定的已有 50余种。命名是根据发现前后常以ga1,ga2,ga 3..... 来命名的。 微克级 (二)合成部位和运输 赤霉素普遍存在于高等植物体内,赤霉素活性最高的部位是植株生长最旺盛的部位。营养芽、幼叶、正在发育的种子和胚胎等含量高,合成也最活跃。成熟或衰老的部位则含量低。 赤霉素在植物体内没有极性运输,体内合成后可做双向运输,向下运输通过韧皮部,向上运输通过木质部随蒸腾流上升。 (三)生理作用 1、促进细胞分裂和茎的伸长 这是赤霉素最显著的生理效应,尤其对矮生突变品种的效果特别显著。原因是矮生品种如玉米和豌豆系单基因突变使植物缺少赤霉素的产生能力。对以叶茎为收获目的的植物象芹菜、莴苣、韭菜、苎麻茶叶等应用后可以提前收获并增加产量。且无高浓度抑制问题。(与iaa明显不同) 2、促进抽薹开花 日照长短和温度高低是影响一些植物能否开花的制约因子(见12章成化生理)。如芹菜要求低温和长日照两个因子均满足才能抽薹、开花,通过ga3处理,便可诱导开花,替代了植物需要的低温和长日照。对于花芽已分化的植物,ga具有显著的促进作用(针叶树种)。 3、打破休眠 ga能有效的打破许多延存器官(种子、块茎)的休眠,促进萌发。如当年收获的马铃薯芽眼处于休眠状态,0.1~1ppm的赤霉素浸泡10~15分钟,即可打破休眠,一年两季栽培。 4、促进雄花分化和提高结实率 对雌雄同株异花植物,使用ga后雄花比例增加,如黄瓜。还可提高梨苹果的座果率,20~50ppm赤霉素喷施可防止棉花脱落。 5、促进单性结实 如用200~500ppm的赤霉素水溶液喷洒开花一周后的果穗,便可形成无子葡萄,无核率达60~90%。 三、细胞分裂素 (一)发现 细胞分裂素是一类具有促进细胞分裂等生理功能的植物生长物质的总称。 1962~1964 lethem首次从受精后11~16天的甜玉米灌浆初期的子粒中分离出天然的细胞分裂素,命名为玉米素并鉴定了化学结构。到目前为止已鉴定出几十种。 (二)运输和代谢 细胞分裂素普遍存在于旺盛生长的、正在进行分裂的组织或器官、未成熟种子、萌发种子和正在生长的果实。 合成部位为根系。生物合成了解甚少。 运输无极性,可随木质部蒸腾流向上输送。 (三)生理作用 1、促进细胞分裂 细胞分裂过程包括细胞核分裂和细胞质分裂两方面,通常认为生长素主要促进核的有丝分裂,细胞分裂素促进细胞质的分裂。故缺乏细胞分裂素时易形成多核细胞。 2、促进芽的分化 植物组织培养试验发现ctk/iaa比例可对愈伤组织根芽分化起到调控作用。高比值有利于芽的分化,反之则有利于根的形成。比值适当愈伤组织保持生长而不分化。 3、促进细胞扩大 用ctk处理四季豆黄花叶的圆片或菜豆、萝卜的子叶可见细胞明显地扩大。 4、促进侧芽发育,解除顶端优势 ctk作用于腋芽可促进维管束分化有利于营养物质的运输,从而促进腋芽的发育。 5、延缓叶片衰老 离体叶片上如涂抹ctk则涂抹部位可在较长时间内保持鲜绿,因而ctk具有延缓叶片衰老的作用。ctk移动性差,涂抹后可从周围吸取营养,以保持其新鲜度,而使周围组织迅速衰老。因此ctk若处理水果和鲜花则有保鲜保绿的作用。还有解除需光种子的休眠等作用。四 脱落酸 一、脱落酸的发现 (一)脱落酸的发现 脱落酸(abscisic acid,aba)是指能引起芽休眠、叶子脱落和抑制生长等生理作用的植物激素。它是人们在研究植物体内与休眠、脱落和种子萌发等生理过程有关的生长抑制物质时发现的。 1961年刘(w.c.liu)等在研究棉花幼铃的脱落时,从成熟的干棉壳中分离纯化出了促进脱落的物质,并命名这种物质为脱落素(后来阿迪柯特将其称为脱落素ⅰ)。1963年大熊和彦和阿迪柯特(k.ohkuma and f.t.addicott)等从225kg 4~7天龄的鲜棉铃中分离纯化出了9mg具有高度活性的促进脱落的物质,命名为脱落素ⅱ(abscisinⅱ)。 在阿迪柯特领导的小组研究棉铃脱落的同时,英国的韦尔林和康福思)领导的小组正在进行着木本植物休眠的研究。几乎就在脱落素ⅱ发现的同时,伊格尔斯(c.f.eagles)和韦尔林从桦树叶中提取出了一种能抑制生长并诱导旺盛生长的枝条进入休眠的物质,他们将其命名为休眠素(dormin)。1965年康福思等从28kg秋天的干槭树叶中得到了260μg的休眠素纯结晶,通过与脱落素ⅱ的分子量、红外光谱和熔点等的比较鉴定,确定休眠素和脱落素ⅱ是同一物质。1967年在渥太华召开的第六届国际生长物质会议上,这种生长调节物质正式被定名为脱落酸。 (二)aba的结构特点 aba是以异戊二烯为基本单位的倍半萜羧酸,化学名称为5-(1′-羟基?2′,6′,6′-三甲基-4′-氧代-2′-环己烯-1′-基)-3-甲基-2-顺-4-反-戊二烯酸〔5-(1′-hydroxy-2′,6′,6′-trimethyl-4′-oxo-2′-cyclohexen-1′-yl)-3-methyl-2-cis?-4-trans-pentadienoic acid〕,分子式为c15h20o4,分子量为264.3。aba环1′位上为不对称碳原子,故有两种旋光异构体。植物体内的天然形式主要为右旋aba即(+)-aba,又写作(s)-aba。 (三) aba的分布与运输 脱落酸存在于全部维管植物中,包括被子植物、裸子植物和蕨类植物。苔类和藻类植物中含有一种化学性质与脱落酸相近的生长抑制剂,称为半月苔酸(lunlaric acid),此外,在某些苔藓和藻类中也发现存在有aba。 高等植物各器官和组织中都有脱落酸,其中以将要脱落或进入休眠的器官和组织中较多,在逆境条件下aba含量会迅速增多。水生植物的aba含量很低,一般为3~5μg·kg-1;陆生植物含量高些,温带谷类作物通常含50~500μg·kg-1?,鳄梨的中果皮与团花种子含量高达10mg·kg-1与11.7mg·kg-1。 脱落酸运输不具有极性。在菜豆叶柄切段中,14c-脱落酸向基运输的速度是向顶运输速度的2倍~3倍。脱落酸主要以游离型的形式运输,也有部分以脱落酸糖苷的形式运输。脱落酸在植物体的运输速度很快,在茎或叶柄中的运输速率大约是20mm·h-1。 二、脱落酸的生理效应 ? (一) 促进休眠 外用aba时,可使旺盛生长的枝条停止生长而进入休眠,这是它最初也被称为"休眠素"的原因。在秋天的短日条件下,叶中甲瓦龙酸合成ga的量减少,而合成的aba量不断增加,使芽进入休眠状态以便越冬。种子休眠与种子中存在脱落酸有关,如桃、蔷薇的休眠种子的外种皮中存在脱落酸,所以只有通过层积处理,脱落酸水平降低后,种子才能正常发芽。 (二) 促进气孔关闭 aba可引起气孔关闭,降低蒸腾,这是aba最重要的生理效应之一。科尼什(k.cornish,1986)发现水分胁迫下叶片保卫细胞中的aba含量是正常水分条件下含量的18倍。aba促使气孔关闭的原因是它使保卫细胞中的k+外渗,从而使保卫细胞的水势高于周围细胞的水势而失水。aba还能促进根系的吸水与溢泌速率,增加其向地上部的供水量,因此aba是植物体内调节蒸腾的激素,也可作为抗蒸腾剂使用。 (三) 抑制生长 aba能抑制整株植物或离体器官的生长,也能抑制种子的萌发。aba的抑制效应比植物体内的另一类天然抑制剂--酚要高千倍。酚类物质是通过毒害发挥其抑制效应的,是不可逆的,而aba的抑制效应则是可逆的,一旦去除aba,枝条的生长或种子的萌发又会立即开始。 (四)促进脱落 aba是在研究棉花幼铃脱落时发现的。aba促进器官脱落主要是促进了离层的形成。将aba涂抹于去除叶片的棉花外植体叶柄切口上,几天后叶柄就开始脱落,此效应十分明显,已被用于脱落酸的生物检定。 (五)增加抗逆性 一般来说,干旱、寒冷、高温、盐渍和水涝等逆境都能使植物体内aba迅速增加,同时抗逆性增强。如aba可显著降低高温对叶绿体超微结构的破坏,增加叶绿体的热稳定性;aba可诱导某些酶的重新合成而增加植物的抗冷性、抗涝性和抗盐性。因此,aba被称为应激激素或胁迫激素(stress hormone)。 五 乙烯 一、乙烯的发现 早在上个世纪中叶(1864)就有关于燃气街灯漏气会促进附近的树落叶的报道,但到本世纪初(1901)俄国的植物学家奈刘波(neljubow)才首先证实是照明气中的乙烯在起作用,他还发现乙烯能引起黄化豌豆苗的三重反应。第一个发现植物材料能产生一种气体并对邻近植物材料的生长产生影响的人是卡曾斯,他发现橘子产生的气体能催熟同船混装的香蕉。 虽然1930年以前人们就已认识到乙烯对植物具有多方面的影响,但直到1934年甘恩(gane)才获得植物组织确实能产生乙烯的化学证据。 1959年,由于气相色谱的应用,伯格(s.p.burg)等测出了未成熟果实中有极少量的乙烯产生,随着果实的成熟,产生的乙烯量不断增加。此后几年,在乙烯的生物化学和生理学研究方面取得了许多成果,并证明高等植物的各个部位都能产生乙烯,还发现乙烯对许多生理过程、包括从种子萌发到衰老的整个过程都起重要的调节作用。1965年在柏格的提议下,乙烯才被公认为是植物的天然激素。 乙烯(ethylene,et,eth)是一种不饱和烃,其化学结构为ch2=ch2,是各种植物激素中分子结构最简单的一种。乙烯在常温下是气体,分子量为28,轻于空气。乙烯在极低浓度(0.01~0.1μl·l-1)时就对植物产生生理效应。种子植物、蕨类、苔藓、真菌和细菌都可产生乙烯。二、乙烯在植物体内的分布及运输 乙烯在植物体内易于移动,并遵循虎克扩散定律。此外,乙烯还可穿过被电击死了的茎段。这些都证明乙烯的运输是被动的扩散过程,但其生物合成过程一定要在具有完整膜结构的活细胞中才能进行。 一般情况下,乙烯就在合成部位起作用。乙烯的前体acc可溶于水溶液,因而推测acc可能是乙烯在植物体内远距离运输的形式。 三、乙烯的生理效应 1、改变生长习性 乙烯对植物生长的典型效应是:抑制茎的伸长生长、促进茎或根的横向增粗及茎的横向生长(即使茎失去负向重力性),这就是乙烯所特有的"三重反应"乙烯促使茎横向生长是由于它引起偏上生长所造成的。所谓偏上生长,是指器官的上部生长速度快于下部的现象。乙烯对茎与叶柄都有偏上生长的作用,从而造成了茎横生和叶下垂。 2、促进成熟 催熟是乙烯最主要和最显著的效应,因此乙烯也称为催熟激素。乙烯对果实成熟、棉铃开裂、水稻的灌浆与成熟都有显著的效果。在实际生活中我们知道,一旦箱里出现了一只烂苹果,如不立即除去,它会很快使整个一箱苹果都烂掉。这是由于腐烂苹果产生的乙烯比正常苹果的多,触发了附近的苹果也大量产生乙烯,使箱内乙烯的浓度在较短时间内剧增,诱导呼吸跃变,加快苹果完熟和贮藏物质消耗的缘故。又如柿子,即使在树上已成熟,但仍很涩口,不能食用,只有经过后熟过程后才能食用。由于乙烯是气体,易扩散,故散放的柿子后熟过程很慢,放置十天半月后仍难食用。若将容器密闭(如用塑料袋封装),果实产生的乙烯就不会扩散掉,再加上自身催化作用,后熟过程加快,一般5天后就可食用了。 3、促进脱落 乙烯是控制叶片脱落的主要激素。这是因为乙烯能促进细胞壁降解酶--纤维素酶的合办成并且控制纤维素酶由原生质体释放到细胞壁中,从而促进细胞衰老和细胞壁的分解,引起离区近茎侧的细胞膨胀,从而迫使叶片、花或果实机械地脱离。 4、促进开花和雌花分化 ?乙烯可促进菠萝和其它一些植物开花,还可改变花的性别,促进黄瓜雌花分化,并使雌、雄异花同株的雌花着生节位下降。乙烯在这方面的效应与iaa相似,而与ga相反,现在知道iaa增加雌花分化就是由于iaa诱导产生乙烯的结果。 5、乙烯的其它效应 乙烯还可诱导插枝不定根的形成,促进根的生长和分化,打破种子和芽的休眠,诱导次生物质(如橡胶树的乳胶)的分泌等。

文章TAG:阻尼减震器  伺服驱动器的阻尼减振是什么意思  阻尼  减震器  伺服  
下一篇