渗碳淬火技术也属于装甲技术的第二代技术,第一代是普通的低碳钢装甲。装甲表面硬化处理也是坦克装甲发展的一个历史阶段,坦克自1915年诞生时就考虑到了装甲强度的问题,所以使用了当时最好的锅炉用钢,当时的10毫米厚的装甲就能抵挡战场上的武器弹药了,后来就逐步的出现了克星,于是坦克一路走来越来越重了,10毫米不行就20毫米,20毫米不行就30毫米……一直到现在的装甲防护水平相当于1000毫米以上的均质装甲厚度。

而反坦克武器也是一步步紧逼,其实坦克装甲防护正是反坦克弹药给逼的。但总不能无限的依靠增加装甲厚度解决问题吧!于是到了上世纪三十年代中后期,也就是第二次世界大战前期,破甲弹出现了,装甲终于不能指望靠增加厚度抵抗打击了,正是这个阶段,坦克装甲从过去的低碳钢装甲开始走向了合金装甲。合金装甲防护技术属于第二代装甲防护技术,主要就是在低碳钢装甲中加入贵重金属,例如,加入镍、铬、钼、锰等合金元素,这样坦克装甲钢板的强度就成倍增加,但有一个问题,就是这些贵重金属非常奇缺,并不是谁都能够获得。

二战时期德、日等国就缺少这些贵重金属的获得,无奈之下只能是采取传统的表面渗碳硬化处理工艺,也就是硬化装甲。硬化装甲的防护性能和合金钢装甲比并不占优势,例如,20毫米合金钢装甲的防护性能能够达到30甚至40毫米厚匀质装甲的强度,渗碳淬火工艺钢装甲只能达到26毫米厚匀质钢装甲的厚度,所以二战时期德国坦克装甲厚度普遍大。

对德国来说,可喜的是二战时期的合金钢装甲技术发展并不快,否则更难。坦克装甲渗碳淬火工艺在二战时期也不是什么新技术,主要用在齿轮、轴承等等零件的加工处理上,增加硬度的同时又能具备很好的耐磨性能,被广泛用于机械制造,武器装备领域,由此来看,德国也是因为缺少资源才采取了这样的工艺措施,否则凭借二战时期德国的军工技术先进程度,研制出高性能的合金装甲并非不可能。

今天德国的坦克装甲防护水平以及火炮工艺水平大家应该有所认识,也是一种技术传承。总体而言,装甲表面渗碳硬化处理后的装甲防护性能不及合金钢。二战时期坦克装甲防护还有一个就是铸造,主要用在炮塔的制造上,苏联的著名T-34坦克就采用了铸造技术,铸造技术的优势有很多,工艺简单,用时少,在二战的坦克消耗战中,一辆坦克的用工工时决定了战争的走向。

二战时期装甲焊接技术水平并不高,特别是合金钢装甲的焊接对工艺要求高,制约了坦克的发展。我们以德国和苏联坦克用工工时来对比一下,苏联T-34坦克从外观上就能看出来,结构布局非常简单,从正面看就是一个三角形,车体采用倾斜装甲,炮塔为铸造成型,T-34坦克的工时约8000工时,而虎式坦克的工时28000工时,德国用时最好的是好Pzkpfw IV号坦克,工时5000工时,不过对于这个也存在着疑问,例如,lV号坦克的75毫米坦克炮用工时就2200个,也许是组装工时吧!不过德国的 lV号坦克确实是一款适合消耗战的中坚车型,只不过是在虎式坦克和黑豹坦克的夹缝中生存,靠吃虎式坦克和黑豹坦克的剩饭支撑着,即便是这样,这款被称为“日耳曼军马”的 lV号坦克还是达到了虎式坦克和黑豹坦克总产量一倍左右。

由此来看,装甲技术的生产也关系到了武器装备的产量。二战时期的渗碳淬火硬化装甲技术使用国家最多的就属德国,德国的坦克装甲车辆上普遍使用了这种工艺。第二应该属于日本,日本的小豆坦克就是采用了渗碳淬火技术,不过日本坦克就是一个另类,不值得一提,不够丢人的。日本使用渗碳淬火硬化工艺主要是海军舰船上使用,大和号战列舰就采用了渗碳淬火工艺处理舰体钢板。

其它的国家例如英国也有使用,不过不是主流。其实装甲渗碳淬火技术并不是装甲技术,而是后处理工艺,等于是重新在处理一遍。虽然能够增加装甲强度,但用工时也被延长,不如在低碳钢冶炼期间直接加入2 % ~6%的镍、1%~ 2.5%的铬、0.2 %~0.6% 的钼等来的快。属于没有办法的办法。现在渗碳淬火工艺依然是一个普遍使用的技术,只不过是和二战时期的技术比要现在化了很多,同时性能也大幅度提升,工艺也多种多样。

但是坦克装甲技术不需要这种技术,已经去了复合装甲,凯夫拉装甲等。至于具体性能,没有人说坦克装甲技术从诞生开始就是严格保密的,尤其是现在。没人说,大部分只能是猜测。所以以上数据源网络仅供参考。目前渗碳等元素的技术已经非常成熟,主要是在工业机械零件的加工生产领域。以上为兔哥个人观点。欢迎关注兔哥,也欢迎讨论评论!图片来源网络。

 3/3   首页 上一页 1 2 3 下一页

文章TAG:二战  自动武器  单兵  著名  技术  
下一篇