本文目录一览

1,库房工具管理rfid误扫漏扫问题并存怎么解决

如果漏读,肯定需要把读写器功率调大 或者改变进出货物的摆放 避开金属件的遮挡误读, 一. 可以调整通道门角度, 二, 在通道门和货架之间加铁板
我是来看评论的

库房工具管理rfid误扫漏扫问题并存怎么解决

2,如何在测试rfid物品的时候屏蔽干扰

1、标签背面贴915MHZ专用吸波材料2、采用陶瓷标签3、做标签模具垫高INLAY与金属之间的距离

如何在测试rfid物品的时候屏蔽干扰

3,现在买衣服的店里防止顾客不交钱拿走衣服报警装置用的什么技术 是

虽然我很聪明,但这么说真的难到我了
目前用的是EAS比较多 有两种一种是射频技术:射频系统采用RF技术,中心频率为8.2MHz,扫频宽度约1MHz 的调制波,在发射机和接收机之间形成一个稳定的电场置于商场出口。另一种是声磁技术:发射机发出射频(约58kHz)脉冲信号,从而激活监视区域内的标签。用RFID超高频(902-928MHz)是趋势,因为可以有更多的应用,比如进出库,盘点,物流管理等

现在买衣服的店里防止顾客不交钱拿走衣服报警装置用的什么技术 是

4,RFID标签如何抗金属的干扰

1、标签背面贴915MHZ专用吸波材料2、采用陶瓷标签3、做标签模具垫高INLAY与金属之间的距离

5,利用RFID技术制作电子签到系统怎样防止代签

RFID签到系统一般用高频的开放式通道YX-CH-IRCON-ACC,结合红外判断进出以及防尾随对于签到的,一人如果带两张卡也可以识别的,也就是说如果一个人代别人签到带两张卡会识别到。并且红外可以判断进出,一个人带自己的卡进去了,再不带卡出来带别人的卡也会被识别。如果要防止一个人带别人的卡签到,可以结合视频的方式,进入的时候视频显示此人图片,由保安来判断是否本人签到。也可以人进入的时候启动摄像头拍照,后来比对是否代签。
相信自己的判断吧

6,如何破坏rfid技术

RFID防伪标签都是防拆的。一般拆坏后,就无法识别了。也就无法认证是否是正品了。还有一种破坏是将RFID标签杀死。标签在物理上看是完好的,但是也无法被识别了。同样无法认证。

7,rfid测试中acc这项测试的是什么意思

汽车ACC线是点火开关ACC档的输出线,用于控制不是点火线路的小电流用电设备。当点火开关在ACC档时,此线电压是12伏。测量这个电压有几种方法:1 直流电压表测量,用万用表的直流电压档,红表笔接此线,黑表笔接搭铁,打开点火开关的ACC档,表屏显示12伏为正常。2 直流表笔测量,用专用的直流电压测量笔,表笔接ACC线,人体触碰表笔尾部,正常表笔显示12伏电压。3, 试灯测量,将试灯线一端接入ACC线,另一端搭铁,经点火开关打到ACC档,灯泡亮,线路正常。用测量220伏交流电的氖泡试电笔是无法测量直流低电压的。
rfid即radio frequency identification(射频识别)的英文缩写,它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据,相对于eas对偷盗现象发生之后进行阻止,rfid的出现可以真正实现实时监控商品的异样情况

8,2RFID标签如何抵制抗金属的干扰

RFID抗干扰性在各个频段的方式是不一样的像在13.56MHz高频读写器,一般在金属环境中干扰比较大但可以用高频天线自动调谐单元HATU来克服,自动调谐单元就是自动调节天线的在金属环境中的频率到13.56MHz超高频902-928MHz的抗干扰一般指金属干扰和液体干扰标签贴到金属上的话可以用抗金属标签UT8957贴在金属表面也可以达到好的识别效果液体环境中的话需要离开液体大概2cm

9,RFID在物流作业重要注意些什么

据中国·创羿分析得出结论  1.物流对象物的物理特性  所谓物流对象物的物理特性指被识别物体的形态(固体、液体、气体)、导电性能(可导和不可导)、金属性能(金属和非金属)、密度等。一般来讲,可导电的液态物质会对电磁波产生很强的吸收作用,而金属物品或者高密度的非金属材料会对电磁波产生反射作用。而在物流应用场合,特别是在日用百货、行包分拣等场合,往往物流对象物的内容是不确定的,也就是说,物流对象物的性质是非常复杂的,有固体、有可导液体、可能还存在金属物品。一般来讲,对于含有可导液态媒介的产品,可以采用低频(LF)或者高频(HF)的产品来进行识别;而对于非金属、非可导媒介物的识别,则可以采用超高频(UHF)系统;而对于金属材料物品的识别,目前一般采用在金属与被识别物体和标签之间添加一层铁氧体材料的方式来解决。  2.被识别物体的形状  被识别物体的形状涉及到标签的安装,对于规则形状的物体来讲,标签安装较为容易,或粘贴、或挂贴,被识别对象物本身不会对标签形成遮挡,因为即使是不可导、非金属的材料,它也会对电磁波形成一定的衰减效应,从而影响RFID的识别效果。此外,标签的阅读也可能会存在一定的方向性,如线极化的RFID系统对标签的方向性要求就较为严格。物体形状的不规则特别是柔性的包装袋会改变标签的阅读方向,从而也会导致阅读率的降低。  3.被识别物体的大小  被识别物体的大小直接关系到系统阅读距离的远近,以及影响阅读器系统的安装方式。当然,如果标签是固定安装在阅读器天线的一侧,则能够保证阅读效果比较理想。  4.被识别对象的移动速度  被识别物体移动速度的快慢关系到标签在电磁场中停留的时间,也就是标签获取能量的时间,这个时间越长,标签内部电容充电越多,持续的放电时间也越长,工作越稳定可靠。因此,过高的速度会影响到阅读结果的准确性。  5.同时识别的标签数  这是RFID系统所固有的优良特性之一。然而同样的,同时识别的标签数越多,系统阅读越不可靠。此外,针对不同的频率的系统,系统的抗冲撞性能也会有所差异。超高频的抗冲撞性能最好,低频则最差。  6.安装环境  由于RFID系统赖以工作的基本原理是电磁波的耦合与传播,因此,系统的性能对安装环境的电磁影响是非常敏感的。在实际应用中,安装环境的一根电线、网线等等都可能会对系统的阅读性能产生影响。  7.应用层级  RFID系统所谓的应用层级指RFID标签应用到那个层次,是单品级、小包装级、大包装级、托盘级还是集装箱级等等。以卷烟为例,其应用可以是每一包香烟,也可以是一条,或者是一箱,而对于库房管理来讲,还可以是一个托盘。不同层级的应用会改变识别物的大小、同时识别的识别物的多少等等,因此也会影响到识别效果的好坏。  8.标签形状与大小  标签的形状与大小与安装方式有关,标签越小,阅读效果越差,标签的封装越困难。标签的形状各种各样,包括条形的、卡片形的、圆柱形的以及各种异型标签。标签的大小和形状需要根据具体的应用系统的需求来决定。  9.安装方式  标签在被识别对象物上的安装可以采用粘贴、挂贴、内嵌、佩戴等方式,对于卡车、集装箱等上应用的较大型标签,还可以采用铆接的形式。安装方式与安装位置的选择对于系统来讲,同样是非常重要的。  10.标签的成本  对于RFID系统来讲,标签是消耗品。系统的其他投资是一次性的,而标签的投资则是经常性的,即使是可以回收利用的系统,也需要经常补充损坏或者遗失的标签。目前,标签的成本都比较高,因此,RFID系统的选择必须根据被识别物品本身的价值以及所能创造的附加值等来综合考虑。
“每秒最高可读1000张标签”不知道是哪家的产品,也许是在实验室环境吧?至少在现实环境中暂时还没有这么用的,汗!“物流中的供应链管理”不知道是什么意思?听说过“供应链管理中的物流管理”,现在楼上的又创新了“物流中的供应链管理”,牛!“沃尔玛已经命令他的前300家供应商在送往他的物流中心的货物上贴有rfid标签”。贴在哪里?托盘?包装箱?单品?楼上的可知道沃尔玛现在rfid应用重点的转移?误人子弟!!!

10,如何破坏rfid技术

咨询记录 · 回答于2021-08-05 RFID防伪标签都是防拆的。一般拆坏后,就无法识别了。也就无法认证是否是正品了。还有一种破坏是将RFID标签杀死。标签在物理上看是完好的,但是也无法被识别了。同样无法认证。 标签物理破坏有什么机器不碰到标签可以破坏掉的 尽量撕掉标签后,用天娜水或工业酒精一擦就掉了,这些东西五金店都有卖,也不贵,小瓶工业酒精几块钱的事。

11,仓库在管理库位的情况下进行盘点每箱货物上都有一个RFID如

RFID仓储物流管理系统采用RFID自动识别技术,在仓库的货物和库位上面安装电子标签,给每件货物和库位一个标识,或者对托盘进行标识,让货物与库位关联;实现在仓储管理中的入库、出库、移库、盘点、运输等关键作业环节中信息的快速识别、自动、高效、批量的采集。在进出仓库的大门处安装超高频天线与RFID读写器,当货物经过大门时,切割红外激活RFID读写器工作,RFID标签会被读写器读到,从而通过计算标签的数量知道进出的货物数量,再通过仓储软件来自动处理进出库,完成自动出入库的操作。盘点的过程使用RFID手持机来完成,由工作人员拿着RFID手持机在所要盘点的货物上面读取数据,盘点完所要盘点的货物,同时可以通过读取RFID电子标签知道货物的相关信息,还可以输入货物名称来查找货物在仓库里面的位置。在货架上面安装RFID电子标签来标识货架,同时在叉车上面加装RFID读写器和车载电脑,就能实现货物与货架的关联;通过叉车读写器读取货架与货物的标签,既能确切地记录货物的存放位置,同时还能提供叉车在仓库里的位置信息,从而来调配叉车(叉车改装请见相关方案)。采用RFID射频技术的特点:1、自动出入库:手持式读写器稳定读写距离可达2-5米,使用固定式读写器读写距离可达12米以上。有效解决了以往条形码仓储必须手动扫描条形码的问题,实现自动出入库,极大提高仓储人工成本和叉车使用效率。2、数十上百标签,瞬间读取:标签一进入磁场,RFID阅读器就可以即时读取其中的标签信息;利用RFID防碰撞技术和超高频固定式读写器,可以瞬间间读取数十上百个标签,极大提高扫描效率,降低人工成本。3、无屏碍阅读:扫描传统条形码时,标签不能被遮挡。而RFID能够穿透纸张、木材和塑料等非金属和非液体的材质,进行穿透性通信,不需要光源。提供更佳扫描体验,可快速理货、找货、盘点。是仓库管理加速器。4、数据容量大:一维条形码的容量是50Bytes,二维条形码最大容量可储存2到3000字符,RFID电子标签最大的容量则有数MegaBytes。随着记忆载体的发展,数据容量也有不断扩大的趋势。未来物品所需携带的资料量会越来越大,对标签所能扩充容量的需求也相应增加。5、使用寿命长,适应恶劣环境:RFID的无线电通信方式,使其可以应用于粉尘、油污等高污染环境和放射性环境,拥有大于10年(10万次读写)寿命;传统条形码的载体标签纸容易受到污染。此外,由于条形码是附于塑料袋或外包装纸箱上,所以特别容易受到折损;RFID卷标是将数据存在芯片中,因此可以免受污损,RFID抗污染能力和耐久性强。6、重复使用:RFID标签内容可更改,直接好处就是可以重复使用RFID电子标签,摆脱传统条形码标签只能使用一次的情况,可有效降低企业耗材费用(使用条形码仓储系统的企业每年都要采购大量的标签和碳带)7、安全性:RFID电子标签不仅可以嵌入或附着在不同形状、类型的产品上,而且可以为标签数据的读写设置密码保护,从而具有更高的安全性;:由于RFID承载的是电子信息,其数据内容可经由密码保护,使其内容不易被伪造及变编造,安全性更高。8、体积小型化、形状多样化:RFID不需要为读取精确度而配合纸张的固定尺寸和印刷品质,更适合往小型化与多样形态发展,以方便嵌入或附着在不同形状、类型的产品上。方案特点批量自动识别货物标识 利用RFID手持终端现场绑定RFID和货物,省去RFID标签打印时间和人工将标签对应到货物的时间,极大提高货物标识效率。1、到货以后,将事先准备好的RFID标签粘贴到货物上(不需要核对RFID标签和货物是否对应);2、当所有货物都粘贴好标签后,在手持式RFID读写器选定货物的品号、规格等信息;3、用手持式RFID读写器扫描已粘贴好标签的货物,系统自动批量将RFID标签和货物关联,货物标识完成RFID库位 用RFID电子标签标识库位,通过叉车上的无线PC及RFID阅读器读取到的RFID库位标签号能保证货物放在正确的位置。货位标签一般选用抗金属RFID标签。超高扫描速度无障碍阅读,可同时扫描数十上百张标签,全新的扫描方式,极大提高仓储效率,降低仓储成本。存储优势标签存储容量大,有的标签可存储数M数据,即使普通的RFID标签可以存储几百K数据,并且标签大小不受存储数据量大小的影响,可在标签内存储足够多的货物信息。重复使用RFID标签使用寿命一般大于10年(10万次读写),并且内容可更改,所以可以重复使用RFID标签,可回收RFID标签,降低企业仓储成本。提高叉车利用率在叉车上加装RFID读写器和车载电脑,实现货物与货架的关联;通过叉车读写器读取货架与货物的标签,既能确切地记录货物的存放位置,同时还能提供叉车在仓库里的位置信息,从而来调配叉车。可以实时掌握每台叉车的位置及状态,叉车调度可以更灵活,叉车的利用率可以最大化。自动化入库 当有新的入库指令单时:1、系统根据叉车调度计划挑选空闲叉车,并将入库指令发送到叉车的平板电脑上。2、叉车手根据平板电脑收到的入库指令,去叉托盘,叉车上的阅读器读取托盘标签信息并与入库指令上的信息对比,确保操作货物与收到的入库指令一致。3、叉车经过RFID货仓门,货仓门上的阅读器读取叉车上的电子标签,确认身份后开启卡门,并将读取到的叉车信息、托盘标签信息发送后台。4、叉车到达目标货位后,阅读器读取货位标签,确认与指令的目标货位一致后,货物上架,发送指令回到主机系统。5、主机系统确认入库并生成单据更新数据库,并记录本次操作日志。自动化出库 当有新的出库指令单时:1、主机系统挑选离准备出库的仓库较近的空闲叉车,并将出库指令发送到叉车的平板电脑上。2、叉车手根据平板电脑上的托盘明细信息,到达目标货位后,阅读器读取货位及托盘标签,与出库指令比对,确认后托盘货物下架,如果只取托盘的部分货物,需要人工挑拣到目标托盘。3、拣货完毕,发送指令到主机系统,完成出库。4、全部拣货完毕后,用RFID手持机扫描全部托盘标签,与出货单信息核对,无误后回收托盘标签并发送指令到主机系统。5、主机系统确认出库并生成单据更新数据库,并记录本次操作日志。6、清单所有明细都入库后,采集数据及清单数据进行核对,并将核对结果发送到海关监管平台系统。超高效率盘点 利用RFID多标签盘点功能,可快速盘点仓库库存,极大提高了条码方式时盘点扫描花费大量时间的问题。安全检测 当货物离开仓库时,系统自动判断,如果不属于出库货物(出库指令单指定的货物),系统自动报警,防止货物被盗。实施效益 库存的可用性提高 5% 至 10% 送货速度提高 10% 人工成本的减少20%: 场地管理费减少 30% 提高仓库产品的吞吐量可达 20% 减少损坏率和过期商品的销账可达 20%RIFD智能仓储管理系统的应用,保证了货物仓库管理各个环节数据输入的速度和准确性,确保企业及时准确地掌握库存的真实数据,合理保持和控制企业库存。通过科学的编码,还可方便地对库存货物的批次、保质期等进行管理。利用系统的库位管理功能,更可以及时掌握所有库存货物当前所在位置,有利于提高仓储管理的工作效率。避免干扰可以调整RFID的识别距离以及标签的摆放方式
请问你这个问题解决了吗,我也遇到了一样的问题,干扰和误读,不知道怎么解决

12,什么是哈希锁在RFID中怎样使用

RFID安全问题集中在对个人用户的隐私保护、对企业用户的商业秘密保护,防范对RFID系统的攻击以及利用RFID技术进行安全防范等多个方面。面临的挑战是: ① 保证用户对标签的拥有信息不被未经授权访问,以保护用户在消费习惯、个人行踪等方面的隐私。 ② 避免由于RFID系统读取速度快,可以迅速对超市中所有商品进行扫描并跟踪变化,而被利用来窃取用户商业机密。 ③ 防护对RFID系统的各类攻击,如重写标签以篡改物品信息;使用特制设备伪造标签应答欺骗读写器,以制造物品存在的假相;根据RFID前后向信道的不对称性远距离窃听标签信息;通过干扰RFID工作频率实施拒绝服务攻击;通过发射特定电磁波破坏标签等。 ④ 如何把RFID的唯一标识特性用于门禁安防、支票防伪、产品防伪等。 为了避免RFID标签给客户带来关于个人隐私的担忧,同时也为了防止用户携带安装有标签的产品进入市场所带来的混乱,很多商家在商品交付给客户时都把标签拆掉。这种方法无疑增加了系统成本,降低了RFID标签的利用率,并且有些场合标签不可拆卸。为解决上述安全与隐私问题,人们还从技术上提出了多种方案,包括Kill标签、法拉第网罩、主动干扰、智能标签、阻止标签和Hash锁等方法。Hash锁通过简单的Hash函数,增加闭锁和开锁状态,对标签和读写器之间的通信进行访问;但是它无法解决位置隐私和中间人攻击问题。本文提出一种Hash锁改进方法,成功解决了这个问题。 1 Hash锁方法分析 1.1 定读取控制Hash锁方法 在定读取控制Hash锁方法中,射频标签只对授权的读写器起作用,它代表了一种认证过程,认证密匙固定不变。使用该方法的射频标签分别有1个只读(ROM)和1个可读写(如RAM)的存储器,并且每个电子标签只供有限的用户使用。这些用户都共有同一个存储在读写存储器中的识别码。每个标签认证HR8002读写器的过程如图1所示。读写器对每一个电子标签都有一个认证密匙k,每个电子标签都存储有一Hash方程计算的结果metaID=Hash(k)。首先HR8002读写器向射频标签发出ID访问请求,标签向读写器发出相应的metaID。读写器根据接收到的metaID得出密匙k并发送给标签。然后该标签把接收到的密匙k代入Hash方程,检验计算得到的结果与存储在标签中的metaID是否一致。如果一致,标签就把其ID发送给读写器。 该方案提出了一种低成本解决安全与隐私问题的方法。仅仅需要一个Hash方程和存储metaID值就足够。但是它不能防止被跟踪,因为射频标签的反应能提前被预测泄露,并且随机密匙k和标签ID能被敌人窃听到。 1.2 随机读取控制Hash锁的方法 为了避免被跟踪,射频标签的反应不能被预测到而是随机的。主要有两种随机读取控制Hash锁的方法。MIT AutoID中心提出了一种随机Hash方案。读写器向射频标签发出ID访问请求,标签向读写器发出的不是固定的metaID,而是变化的。如图2所示,每个标签与读写器共享一个认证密匙IDk。当读写器向射频标签发出ID访问请求时,射频标签产生一个伪随机数字R和输出(R,h(IDk‖R)),其中h(IDk‖R)是输入R和认证密匙IDk的Hash方程。然后读写器获得所有射频标签的认证密匙。读写器根据接收的R和存储在后台数据库中所有密匙的ID计算Hash方程。如果Hash方程值与射频标签发送的Hash方程值匹配,读写器识别出该射频标签的密匙IDk并发送给射频标签。因为每次访问时,射频标签的输出改变了。该方法避免了被跟踪的缺点;但是该方法不适合少量射频标签的用户。因为被授权的读写器识别一个射频标签,就需要搜索和计算所有标签的ID,因此该方法不适合大量射频标签。 NTT提出了一种Hash链方法。在第i次与读写器交换时,射频标签有其初始值Si,发送ai=G(Si)给HR8002读写器,再根据以前的Si更新密匙Si+1=H(Si)。其中G和H都是Hash函数。 读写器把ai传给后台数据库,后台数据库维持一对列表(ID;Si)。其中Si是初始密匙值,对每一个标签,其值是不同的。后台数据库从读写器处接收标签,输出ai,并且对列表中的每个Si计算a0i=G(Hj(Si)),检查是否ai=a0i。如果ai与a0i匹配,ID就从一对a0i中识别出来了。该方法满足了不可分辨和向前的安全特性。G是单向方程,因此敌人能获得标签输出ai,但是不能从ai获得Si。G输出随机值,敌人能观测到标签输出,但不能把ai和ai+1联系起来。H也是单向方程,敌人能篡改标签并获得标签的密匙值,但不能从Si+1获得Si。该算法优势很明显,但是有太多的计算和比较。为了识别一个ID,后台服务器不得不计算ID列表中的每1个ID。假设有N个已知的标签ID在数据库中,数据库不得不进行N次ID搜索,2N次Hash方程计算和N次比较。计算机处理负载随着ID列表长度成线性增加,因此,该方法也不适合大量射频标签的情况。 2 随机读取控制Hash锁方法的改进 为了避免定读取控制Hash锁方法中的人为攻击和恶意跟踪的缺陷,并克服随机读取控制Hash锁方法中计算负载过大的不足,在随机读取控制Hash锁的基础上,提出了一种改进方法。 2.1 必需的RFID系统各部分结构 (1) 射频标签 射频标签由两部分构成:一部分是只读存储器(ROM)和随机读取存储器(RAM),ROM存储的是标签ID的Hash值,RAM存储的是被鉴别的读写器的ID;另一部分是逻辑电路,主要用于一些简单的计算,如计算Hash方程或产生简单的伪随机数。(2) 读写器 读写器与射频标签无线通信,每一个读写器都有ReaderID,用来识别一批被鉴别的读写器。例如,在超市里的所有读写器都有一样的ReaderID,表明它们都来源于该超市。当HR8002读写器向射频标签发出访问请求时,标签通过读写器的ReaderID检验读写器。读写器同时与后台数据库连接并通信,以识别标签并运行相关的应用。 (3) 数据库 后台数据库存储了一对对射频标签ID和它的Hash方程值:[TagID,hash(TagID)]。一般地,后台数据库与读写器通过有线和安全通道相连接。 2.2 工作原理 读写器要查询射频标签ID,必须首先确定该读写器是否被认证。若读写器被认证,标签则响应读写器并让读写器获得其ID。 (1) 读写器认证 在响应读写器并让读写器获得标签ID信息前,读写器和标签确定了认证体制。因为读写器的ReaderID提前存储在标签的RAM中,所以标签通过读写器ID识别出有权限的读写器。标签不响应没有权限的读写器,因此,不可能被敌人跟踪(因为读写器都有权限)。另外,这种权限化过程是基于标签产生的随机数,因此,还可以防止敌人的哄骗。 当射频标签接收到读写器的请求时,首先射频标签产生随机数k并发送给读写器,读写器接收后传给后台数据库,后台数据库计算a(k)=Hash (ReaderID‖k)并把a(k)传回给HR8002读写器,然后读写器把a(k)发送给标签。同时射频标签计算Hash(ReaderID‖k),然后标签比较读写器与标签计算的a(k)值是否相等。如相等,读写器通过了认证并且标签向它发送一些与TagID相关的信息;若不等,该读写器没有通过认证被屏蔽。 (2) 获得标签的TagID 如图5所示,在读写器认证后,射频标签响应认证的读写器Hash(TagID)。当读写器接收到Hash(TagID)值时,它会与后台数据库通信并寻找数据对(TagID,Hash(TagID)),读写器就会获得相应的TagID。即使Hash(TagID)值被窃听了,当标签向外发送其值时,窃听者也不会知道Hash的值。因为窃听者无法确定TagID与Hash(TagID)之间的相互关系。 (3) 在射频标签存储器里更新认证读写器的ReaderID 当一个物体从一个仓库运到另一个仓库时,被认证的读写器将从先前仓库的读写器改变为当前的读写器。这个过程如图6所示。读写器获得Hash(TagID)的值并传给后台数据库,数据库通知存储在标签里的ReaderID更新。相应地,数据库寻找出New ReaderID并把它传给读写器。当读写器接收到New ReaderID时,读写器把该值与Old ReaderID“异或”,并把“异或”值发送给射频标签。标签能够从“异或”值和Old ReaderID中得出New ReaderID,最后ReaderID被更新。 在ReaderID更新过程中,即使“异或”值被泄露,敌人也不能获取New ReaderID。因为不能获取Old ReaderID,因此防止了哄骗。 2.3 改进方法分析 (1) 防止窃听 在认证过程中,即使敌人窃听到读写器的输出a(k),也不能在下一步获得认证。因为每一认证过程中需要的a(k)值是变化的。前一次认证的a(k)值对于后一次认证来说是无意义的。 认证完后,射频标签输出Hash(TagID)而不是TagID。因为Hash方程很难求其反函数,所以敌人捕获到输出Hash(TagID)值,也不能得到TagID的值。 当射频标签要更新存储器的ReaderID时,所更新的ReaderID是经过旧的ReaderID加密过的,也防止了窃听。 总之,上述改进方法即使在读写器和射频标签之间的通信遭遇到敌人的窃听时,也是安全的。 (2) 防止跟踪 射频标签对敌人是屏蔽的,只对被认证的读写器响应。而且,如上所述,敌人是无法伪造认证读写器的。因为没有标签输出,所以敌人不能通过跟踪标签来跟踪客户刚付费买的是什么。位置隐私及客人携带的物品得到了保护。 (3) 低计算负载 该改进方法运算速度快,成本低。当要从N个已知的射频标签中识别出一个时,读写器只需要执行1次Hash操作和N次ID搜索,而随机读取控制Hash锁方法至少需要N次Hash操作和N次ID搜索。显然在同一安全级上,所提出的改进方法计算负载显著降低;而且认证过程是依赖于N个已知的标签ID和1个Hash锁方程,因此随着标签的数量增多,计算负载缓慢增大。 (4) 适用于大量射频标签 因为计算负载低,并且随着射频标签的数量增加而缓慢增加,所以该方法非常适合有大量标签存在的被保护的RFID系统。 3 结论 以上提出的一种Hash锁改进方法,特别适合于物流管理。该方法需要必要的硬件,如可改写的存储器和简单的逻辑电路。该方法具有高安全性、小负载等优点,适用于大量标签应用的场合;解决了位置隐私和中间人攻击问题,即使敌人窃取了标签的输出,也不能获取标签的ID。般的线性表、树中,记录在结构中的相对位置是随机的即和记录的关键字之间不存在确定的关系,在结构中查找记录时需进行一系列和关键字的比较。这一类查找方法建立在“比较”的基础上,查找的效率与比较次数密切相关。理想的情况是能直接找到需要的记录,因此必须在记录的存储位置和它的关键字之间建立一确定的对应关系f,使每个关键字和结构中一个唯一的存储位置相对应。因而查找时,只需根据这个对应关系f找到给定值K的像f(K)。若结构中存在关键字和K相等的记录,则必定在f(K)的存储位置上,由此不需要进行比较便可直接取得所查记录。在此,称这个对应关系f为哈希函数,按这个思想建立的表为哈希表(又称为杂凑法或散列法)。哈希表不可避免冲突(collision)现象:对不同的关键字可能得到同一哈希地址 即key1≠key2,而f(key1)=f(key2)。具有相同函数值的关键字对该哈希函数来说称为同义词(synonym)。 因此,在建造哈希表时不仅要设定一个好的哈希函数,而且要设定一种处理冲突的方法。可如下描述哈希表:根据设定的哈希函数H(key)和所选中的处理冲突的方法,将一组关键字映象到一个有限的、地址连续的地址集(区间)上并以关键字在地址集中的“象”作为相应记录在表中的存储位置,这种表被称为哈希表。注:这个函数f(key)为哈希函数。(注意:这个函数并不一定是数学函数) 哈希函数是一个映象,即:将关键字的集合映射到某个地址集合上,它的设置很灵活,只要这个地址集合的大小不超出允许范围即可。 现实中哈希函数是需要构造的,并且构造的好才能使用的好。对于动态查找表而言,1) 表长不确定;2)在设计查找表时,只知道关键字所属范围,而不知道确切的关键字。因此,一般情况需建立一个函数关系,以f(key)作为关键字为key的录在表中的位置,通常称这个函数f(key)为哈希函数。(注意:这个函数并不一定是数学函数) 哈希函数是一个映象,即:将关键字的集合映射到某个地址集合上,它的设置很灵活,只要这个地址集合的大小不超出允许范围即可。 现实中哈希函数是需要构造的,并且构造的好才能使用的好。 用途:加密,解决冲突问题。。。。 用途很广,比特精灵中就使用了哈希函数,你可 以自己看看。 具体可以学习一下数据结构和算法的书。字符串哈希函数(著名的ELFhash算法)int ELFhash(char key)while(key)unsigned long g=h&0Xf0000000L;if(g) h^=g>>24;h&=~g;}return h%MOD;}希望能帮到你!

文章TAG:如何阻挡rfid如何  阻挡  rfid  
下一篇