本文目录一览

1,旅客对铁路的什么被称为铁路上的第一道安全防线

客规遵守

旅客对铁路的什么被称为铁路上的第一道安全防线

2,高速铁路中枢神经是什么系统

高速铁路中枢神经是列车控制系统。列车控制系统,它是对列车进行自动监控的,它包括车载、地面、车地信息传输设备,信号传输网络。这个系统分为ATS、ATO、ATP和CI。列车控制系统最大的优点就是运用无线方式来控制列车的运行,在控制运行的时候,有两个核心的设备,分别在地面和车上,地面上的设备称之为RBC系统,车上的称之为ATP系统,这种无线控制列车的技术,在世界上没有几个国家能发展。

高速铁路中枢神经是什么系统

3,24二氯苯胺的理化性质及生理毒性

2,4--二氯苯胺为强高铁血红蛋白形成剂。对中枢神经系统、肝、肾有损害。接触后引起头痛,头晕,恶心,呕吐,指端、口唇、耳廓紫绀,呼吸困难等。慢性影响:患者有神经衰弱综合征表现,伴有轻度紫绀、贫血和肝、脾肿大。
不明白啊 = =!

24二氯苯胺的理化性质及生理毒性

4,被称为高速公路铁路中枢神经的是

被称为高速公路铁路中枢神经的是京沪高速铁路。京沪高速铁路途经中国的华北地区和华东地区,两端连接京津冀和长三角两个经济区域,沿线以平原为主,局部为低山丘陵区,经过海河、黄河、淮河、长江四大水系,所经区域面积是中国社会经济发展活跃的地区之一,也是中国客货运输较繁忙、增长潜力较大的客运专线。京沪高速铁路由北京南站至上海虹桥站,全长1318千米,设24个车站,设计的最高速度为380千米/小时。截至2017年9月,京沪高速铁路的运营速度350千米/小时。截至2020年1月16日,京沪高速铁路已开通运营8周年,共发送旅客11亿人次。京沪高速铁路与既有京沪铁路大体平行,正线全长1318公里,较既有京沪线缩短约145km, 自北京南站西端引出,沿既有京沪铁路,经天津新设天津南站并与天津西站间修建联络线连接;向南沿京沪高速公路。 扩展资料:京沪高速铁路全线共设24个车站,由北向南分别为:北京南站、廊坊站、天津西站、天津南站、沧州西站、德州东站、济南西站、泰安站、曲阜东站、滕州东站、枣庄站、徐州东站、宿州东站、蚌埠南站、定远站、滁州站、南京南站、镇江南站、丹阳北站、常州北站、无锡东站、苏州北站、昆山南站和上海虹桥站。 其中,始发站5个,分别为北京南站、天津西站、济南西站、南京南站和上海虹桥站;19个中间站包括15个地级市站和4个县级站。在这些站点中,北京南站和上海虹桥站是在原有车站基础上新增线路,其余车站为京沪高速铁路新建车站。参考资料来源:百度百科-京沪高速铁路

5,高铁中应用了哪些物理原理

但凡我们没有研究明白的,原理都很复杂。但凡我们研究明白的,原理都很简单。物理领域,湍流现象很常见,但至今还没研究明白,所以是满足你要求的。例如,天气预报。风云雷电很常见,但风是如何流动的,什么时候能形成云,什么时候能下雨,这个东西就涉及到对湍流过程的理解,现在解释的非常复杂,而且还说不太清楚。所以天气预报总报不准。再比如,闪电很常见,但为什么有闪电,解释一直模模糊糊,怎么正电荷就都跑到一团云上了,负电荷就跑到另一团云上了,怎么跑的?不知道。再比如,大家都用石化产品,但石油是怎么形成的?专家一说就很复杂,其实就是还没搞懂,但又不愿承认,所以弄一堆术语糊弄外行。想当年,为了预测星星运动,曾经建立过5层天球运动模型,就是预测不准。第谷作为皇家首席天文观测师,看了几十年星星,记录了大量数据,还是搞不清楚。开普勒继承第谷数据后,整理出行星运动三定律,发现行星运动好简单啊。接着牛顿搞出万有引力定律,把开普勒三定律一解释,发现上千年都无法搞明白的什么日食月食啊,行星运动啊,恒星运动啊,好简单啊。
1、采用最新设计的高速动车。2、轨道采用无砟轨道,可使运行速度大大提高。3、全封闭专用线路运行。4、停站少,可以狂跑。5、交通信号系统采用最新智能化技术。

6,什么细胞分泌的什么物质可以作用于它本身

细胞产生的很多物质都可以作用于自身的,并不是特定的细胞。比如细胞分裂时产生的,溶解核膜的一些蛋白;还有一些内调节的蛋白,比如控制线粒体、叶绿体活动的酶等。
自分泌(autocrine)分泌的细胞因子主要作用于产生细胞因子的细胞本身,调节细胞因子产生细胞自身和邻近同类细胞的活性,多数在局部发挥效应。成纤维细胞自分泌生长因子
功能:垂体分泌激素的多少,是受下丘脑支配的。下丘脑中有一些细胞不仅能传导兴奋,而且能分泌激素。这些激素的功能是促进垂体中激素的合成和分泌。例如,下丘脑分泌的促性腺激素释放激素,能够作用垂体合成和分泌促性腺激素。因此可以说下丘脑是机体调节内分泌活动的枢纽。 作用:有人认为下丘脑后部是交感神经中枢,而前部是副交感神经中枢。但因为没有得到足够的实验事实的支持,这个概念已不被大家所公认。现在认为,下丘脑不是单纯的交感或副交感中枢,而是较高级的调节内脏活动的中枢,它能把内脏活动和其它生理活动联系起来,调节体温、营养摄取、水平衡、内分泌、情绪反应等重要生理过程。 1.体温调节 调节体温的中枢在下丘脑。破坏哺乳动物的下丘脑后,体温不能保持恒定。下丘脑的体温调节机构除有中枢性温度感受器外,还有控制产热和散热功能的中枢。 2.摄食行为的调节 动物实验证明,下丘脑的腹内侧区接近正中隆起的两侧受损伤时, 动物的食量大增;如以电流刺激这一部位,则食量大减。因此,这一部位被称为饱中枢(satiety center)。相反,下丘脑外侧区损毁时,动物食量减少,甚至拒食;若刺激这一部位,则食量大增。因而被认为是摄食中枢(feeding center)的所在。在正常机体,这两部位之间可能是互相制约的。至于摄食中枢的自然刺激是什么,有人认为血糖水平的降低是引起摄食中枢兴奋的主要传入信息。实验征明,动物在饥饿状态下。摄食中枢神经元放电频率较高而饱中枢神经元放电频率较低,静脉注入葡萄糖后,摄食中枢神经元放电频率减少而饱中枢神经元放电频率增多。进一步实验证明,饱中枢的活动还与该中枢内神经细胞的糖利用水平有关。糖尿病患者血糖水平增高,但因缺乏胰岛素,饱中枢神经细胞的糖利用率减少,因此其活动降低而使食欲增加 3.水平衡的调节 损坏下丘脑外侧区除可引起动物拒食外,饮水也明显减少;刺激下丘脑外侧区某些部位,则可引起动物饮水增多。但控制饮水中枢的确切位置目前还不清楚。 下丘脑控制排水是通过抗利尿激素的分泌来完成的。抗利尿激素是由视上核和室旁核的神经元合成的。神经分泌颗粒沿下丘脑-垂体束的神经纤维向外周运输而贮存于神经垂体内,以高渗盐水注入动物的颈内动脉,可刺激抗利尿激素的分泌。下丘脑内的渗透压感受器可能在视上核和室旁核内。电生理研究观察到,当颈内动脉注入高渗盐水时,视上核内某些神经元放电增多。一般认为,下丘脑控制摄水的区域与抗利尿激素分泌的核团在功能上是有联系的,两者协同调节着水平衡 4.腺垂体激素分泌的调节 下丘脑内有些神经元能合成调节腺垂体激素分泌的肽类物质,包括促甲状腺素释放激素、促性腺激素释放激素、生长素释放抑制激素、生长素释放激素、促肾上腺皮质激素释放激素、促黑素细胞激素释放因子、促黑素细胞激素释放抑制因子、催乳素释放因子、催乳素释放抑制因子等。这些肽类物质合成后经轴突运输到正中隆起,由此经垂体门脉系统到达腺垂体,促进或抑制某种腺垂体激素的分泌。此外,下丘脑还有一些神经元对血液中某些激素浓度的变化比较敏感,这种神经元称为觉察细胞(detector cell),能感受血液中激素浓度变化的信息,反馈调节上述肽类物质的分泌,从而更好地控制腺垂体的激素分泌活动 5.对情绪反应的影响 在间脑水平以上切除大脑的猫,常出现一系列交感神经系统过度兴奋的现象,并且张牙舞爪,好似正常猫在搏斗时一样,故称之为“假怒”。平时下丘脑的这种活动受到大脑皮层的抑制而不易表现,但切除大脑皮层以后,则这种抑制解除了,以致在微弱的刺激下就能激发强烈的假怒反应。近年来的研究指出,下丘脑内存在所谓“防御反应区”,它主要位于下丘脑的腹内侧区。在动物麻醉条件下,电刺激该区可引起血压上升,皮肤及胃肠血管收缩,心率加速等交感神经兴奋性反应。在动物清醒状态下,电刺激该区还可出现防御性行为。下丘脑腹内侧区与杏仁核之间有功能联系,两者与情绪反应活动有关。此外,电刺激下丘脑外侧区可引致动物出现攻击行为,电刺激下丘脑背侧区则出现逃避行为。可见,下丘脑与情绪反应的关系非常密切。
某些能分泌激素,且该激素作用的对象是全身各组织细胞的细胞。如,胰岛素能促进细胞对血糖的利用,还有,甲状腺素能促进物质的氧化分解及产热等,都是作用于全身的。

7,在he染色切片中树突的起始部和轴丘有何不同

轴丘是轴突的起始部,在HE染色切片中光景下观察其与树突的起始部的不同之处在于此处无尼氏体。  尼氏体  尼氏体为嗜碱性物质,又称嗜染质,光镜下呈斑块状或细粒状散在均匀分布。在一些大型的运动神经元,尼氏体大而多,宛如虎皮花纹,又称“虎斑”。电镜下,尼氏体由大量平行排列的粗面内质网和其间的游离核糖体组成。  分布  在人体中的分布:分布于神经元胞体和树突中  形状  光镜下,尼氏体为嗜碱性斑块或细颗粒,分布均匀并延续到树突内。电镜下为密集排列的粗面内质网和游离多聚核糖体构成。不同部位形状有所不同:有些位于大神经元,如脊髓运动神经元,呈粗大的斑块状,即虎斑状;有些位于小神经元,如神经节内的神经元,则呈细颗粒状。  轴丘  轴突通常自胞体发出,但也有从主树突干的基部发出。胞体发出轴突的部位常呈圆锥形,称轴丘(axon hillock),光镜下此区无尼氏体,染色淡较淡。  注意看这张图,轴突起始部即为轴丘,此处是没有被染成紫色的嗜碱性颗粒的,即没有尼氏体。
树突和轴突是不一样的,树突的起始部比轴突要短得多。一、神经系统的定义。神经系统(nervous system)是机体内起主导作用的系统,分为中枢神经系统和周围神经系统两大部分。神经系统是人体内起主导作用的功能调节系统。人体的结构与功能均极为复杂,体内各器官、系统的功能和各种生理过程都不是各自孤立地进行,而是在神经系统的直接或间接调节控制下,互相联系、相互影响、密切配合,使人体成为一个完整统一的有机体,实现和维持正常的生命活动。同时,人体又是生活在经常变化的环境中,神经系统能感受到外部环境的变化对体内各种功能不断进行迅速而完善的调整,使人体适应体内外环境的变化。可见,神经系统在人体生命活动中起着主导的调节作用,人类的神经系统高度发展,特别是大脑皮层不仅进化成为调节控制的最高中枢,而且进化成为能进行思维活动的器官。因此,人类不但能适应环境,还能认识和改造世界。二、神经系统的组成。神经系统由中枢部分及其外周部分所组成。中枢部分包括脑和脊髓,分别位于颅腔和椎管内,两者在结构和功能上紧密联系,组成中枢神经系统。外周部分包括12对脑神经和31对脊神经,它们组成外周神经系统。外周神经分布于全身,把脑和脊髓与全身其他器官联系起来,使中枢神经系统既能感受内外环境的变化(通过传入神经传输感觉信息),又能调节体内各种功能(通过传出神经传达调节指令),以保证人体的完整统一及其对环境的适应。神经系统的基本结构和功能单位是神经元(神经细胞),而神经元的活动和信息在神经系统中的传输则表现为一定的生物电变化及其传播。例如,外周神经中的传入神经纤维把感觉信息传入中枢,传出神经纤维把中枢发出的指令信息传给效应器,都是以神经冲动的形式传送的,而神经冲动就是一种称为动作电位的生物电变化,是神经兴奋的标志。中枢神经通过周围神经与人体其他各个器官、系统发生极其广泛复杂的联系。神经系统在维持机体内环境稳定,保持机体完整统一性及其与外环境的协调平衡中起着主导作用。在社会劳动中,人类的大脑皮层得到了高速发展和不断完善,产生了语言、思维、学习、记忆等高级功能活动,使人不仅能适应环境的变化,而且能认识和主动改造环境。内、外环境的各种信息,由感受器接受后,通过周围神经传递到脑和脊髓的各级中枢进行整合,再经周围神经控制和调节机体各系统器官的活动,以维持机体与内、外界环境的相对平衡。神经系统是由神经细胞(神经元)和神经胶质所组成。人体各器官、系统的功能都是直接或间接处于神经系统的调节控制之下,神经系统是整体内起主导作用的调节系统。人体是一个复杂的机体,各器官、系统的功能不是孤立的,它们之间互相联系、互相制约;同时,人体生活在经常变化的环境中,环境的变化随时影响着体内的各种功能。这就需要对体内各种功能不断作出迅速而完善的调节,使机体适应内外环境的变化。实现这一调节功能的系统主要就是神经系统。神经元neuron是一种高度特化的细胞,是神经系统的基本结构和功能单位,它具有感受刺激和传导兴奋的功能。神经元由细胞体和突起两部分构成。胞体的中央有细胞核,核的周围为细胞质,胞质内除有一般细胞所具有的细胞器如线粒体、内质网等外,还含有特有的神经原纤维及尼氏体。神经元的突起根据形状和机能又分为树突dendrite和轴突axon。树突较短但分支较多,它接受冲动,并将冲动传至细胞体,各类神经元树突的数目多少不等,形态各异。每个神经元只发出一条轴突,长短不一,胞体发生出的冲动则沿轴突传出。神经元较长的突起(主要由轴突)及套在外面的鞘状结构,称神经纤维nerve-fibers。在中枢神经系统内的鞘状结构由少突胶质细胞构成,在周围神经系统的鞘状结构则是由神经膜细胞(也称施万细胞)构成。神经纤维末端的细小分支叫神经末梢。神经元间联系方式是互相接触,而不是细胞质的互相沟通。该接触部位的结构特化称为突触synapse,通常是一个神经元的轴突与另一个神经元的树突或胞体借突触发生机能上的联系,神经冲动由一个神经元通过突触传递到另一个神经元。长而分支少的是轴突,短而呈树枝状分支的是树突。神经系统由脑、脊髓、脑神经和脊神经组成。
树突:每个神经元有一至多个树突,从树突干发出许多分支。轴丘:无尼氏体,染色淡,比树突细,直径均一,有侧支呈直角分出

文章TAG:什么被称为高铁中枢神经系统  
下一篇