1,哪个品牌的便携式X射线衍射仪比较好

德国Planet便携式 确实很优秀 在体积上和集成度上很优秀
美国伊诺斯便携式x射线衍射仪非常不错,方便携带,操作简单,没有了择优取向的困扰,在中国深圳莱雷科技有这样的产品,这是伊诺斯在中国的售服中心
美国奥林巴斯,伊诺斯

哪个品牌的便携式X射线衍射仪比较好

2,X射线衍射仪的工作原理

  X射线衍射仪工作原理  X射线是利用衍射原理,精确测定物质的晶体结构,织构及应力。对物质进行物相分析、定性分析、定量分析。广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。  特征X射线是一种波长很短(约为20~0.06nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W. H. Bragg, W. .L Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格定律:  2dsinθ=nλ  式中λ为X射线的波长,n为任何正整数。当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一点阵晶格间距为d的晶面面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。  X射线衍射的应用  1、当X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格条件的反射面得到反射。测出θ后,利用布拉格公式即可确定点阵平面间距d、晶胞大小和晶胞类型;  2、利用X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法的理论基础,测定衍射线的强度,就可进一步确定晶胞内原子的排布。  3、而在测定单晶取向的劳厄法中所用单晶样品保持固定不变动(即θ不变),以辐射线束的波长λ作为变量来保证晶体中一切晶面都满足布拉格条件,故选用连续X射线束。再把结构已知晶体(称为分析晶体)用来作测定,则在获得其衍射线方向θ后,便可计算X射线的波长λ,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分  4、X射线衍射在金属学中的应用:  X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。(1)物相分析是X射线衍射在金属中用得最多的方面,又分为定性分析和定量分析。定性分析是把对待测材料测得的点阵平面间距及衍射强度与标准物相的衍射数据进行比较,以确定材料中存在的物相;定量分析则根据衍射花样的强度,确定待测材料中各相的比例含量。 (2)精密测定点阵参数常用于相图的固态溶解度曲线的绘制。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可获得单位晶胞原子数,从而可确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。 (3)取向分析包括测定单晶取向和多晶的结构(如择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。 (4)晶粒(嵌镶块)大小和微观应力的测定由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。 (5)宏观应力的测定宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测定点阵平面在不同方向上的间距的改变,可计算出残留应力的大小和方向。 (6)对晶体结构不完整性的研究包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。 (7)合金相变包括脱溶、有序无序转变、母相新相的晶体学关系,等等。 (8)结构分析对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。 (9)液态金属和非晶态金属研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。 (10)特殊状态下的分析在高温、低温和瞬时的动态分析。

X射线衍射仪的工作原理

3,X射线衍射仪可以测密度吗

穿透作用。x射线衍射仪因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。x射线衍射仪穿透物质的能力与x射线衍射仪光子的能量有关,x射线衍射仪的波长越短,光子的能量越大,穿透力越强。x射线衍射仪的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开来。

X射线衍射仪可以测密度吗

4,请教一下X射线衍射仪的问题

X射线衍射仪测试条件中的电压和电流应该称作加速电压和灯丝电流,灯丝电流大释放出来的电子就多,而电压(即加速电压),则让电子有足够的速度去轰击X射线靶材。 通常电压实用值为靶材X射线激发电压的5~8倍,灯丝电流则视实际要求决定但受仪器可用功率的限制。
应该是管电压和管电流,即给X光管加的电压和电流,没听说过靶电压和靶电流,如果有,应该是一样的!

5,X射线衍射仪属于中能还是低能辐射设备

x射线衍射仪书低能辐射设备,其x射线能量与靶的材料和电子能量有关,射线波长与原子晶格结构相当,否则难以观察到明显衍射效应。
测试还是买?测试选贵的。买的话性价比好的是日本理学,不差钱就买布鲁克的!
有“中能”“低能”的定义吗?我觉得辐射还是很强的。因为X衍射仪就是高能X射线汇聚打在材料上,要是正常运行的时候你手在光路上挥一下你的手肯定废了。

6,什么是x射线衍射仪衍射仪法为什么能广泛应用

X射线衍射仪是利用X射线衍射原理研究物质内部微观结构的一种大型分析仪器,广泛应用于各大、专院校,科研院所及厂矿企业。作为X射线衍射仪(XRD)家族中一款颠覆性的产品,与传统台式XRD相比较,X射线衍射仪(XRD)具有以下优势:1.便携式机体小,2.自动化使用样品振动装置,使用简单3.集成性使用透射几何衍射技术及高灵敏度CCD探测器4. 微量化检测检测样品只需15mg,尤其适合刑侦、环境、炸药、管道腐蚀等难于收集样品的检测分析。5.无线传输采用WIFI无线连接,可远程操控及传输采集的数据,实现数据采集的现场性和数据处理的及时性。 衍射仪法以其方便、快捷、准确和可以自动进行数据处理等特点在许多领域中取代了照相法,现在已成为晶体结构分析等工作的主要方法。

7,X射线粉末衍射仪和X射线衍射仪又什么区别

“X射线衍射仪"可分为"X射线粉末zhidao衍射仪"和"X射线单晶衍射仪器".由于物质要形成比较大的单晶颗粒很困难。所以目前X射线粉末衍射技术是主流的X射线衍射分析技术。单晶衍射可以分析出物质分子内部的原子的空间结构。粉末衍射也可以分析出空间结构。但是大分子(比回如蛋白质等)等复杂的很难分析。X射线粉末衍射可以1,判断物质是否为晶体。2,判断是何种晶体物质。3,判断物质的晶型。4,计算物质结构的应力。5,定量计算混合物质的比例。6,计算物质晶体结构数据。7,和其他专业相答结合会有更广泛的用途。比如可以通过晶体结构来判断物质变形,变性,反应程度等
x射线粉末衍射仪, 针对于测试样品为粉末;x射线衍射仪 , 包括粉末衍射、单晶衍射、高温衍射仪等等 !x射线衍射仪包含x射线粉末衍射仪 ,我们公司用到的是莱雷科技的x射线衍射仪,便携式的很方便,精准度也不错!希望对你有帮助。。。

8,X射线粉末衍射仪的介绍

XRD即X射线衍射,通常应用于晶体结构的分析。X射线是一种电磁波,入射到晶体时在晶体中产生周期性变化的电磁场。引起原子中的电子和原子核振动,因原子核的质量很大振动忽略不计。振动着的电子是次生X射线的波源,其波长、周相与入射光相同。基于晶体结构的周期性,晶体中各个电子的散射波相互干涉相互叠加,称之为衍射。散射波周相一致相互加强的方向称衍射方向,产生衍射线。X射线对于晶体的衍射强度是由晶体晶胞中原子的元素种类、数目及其排列方式决定的。X射线衍射仪是利用X射线衍射法对物质进行非破坏性分析的仪器,由X射线发生器、测角仪、X射线强度测量系统以及衍射仪控制与衍射数据采集、处理系统四大部分组成。
x射线粉末衍射仪, 针对于测试样品为粉末;x射线衍射仪 , 包括粉末衍射、单晶衍射、高温衍射仪等等 !x射线衍射仪包含x射线粉末衍射仪!由于物质要形成比较大的单晶颗粒很困难.所以目前x射线粉末衍射技术是主流的x射线衍射分析技术.单晶衍射可以分析出物质分子内部的原子的空间结构.粉末衍射也可以分析出空间结构.但是大分子(比如蛋白质等)等复杂的很难分析.x射线粉末衍射可以:1,判断物质是否为晶体.2,判断是何种晶体物质.3,判断物质的晶型.4,计算物质结构的应力.5,定量计算混合物质的比例.6,计算物质晶体结构数据.7,和其他专业相结合会有更广泛的用途.比如可以通过晶体结构来判断物质变形,变性,反应程度等!我们年初买了一台莱雷科技的衍射仪,不管是便携还是精准度,都挺赞的!希望可以帮到你....

9,X衍射仪工作原理

X衍射仪是利用衍射光栅,而其是利用光的衍射原理使光波发生色散的光学元件。它是大量相互平行、等宽、等距的狭缝(或刻痕)构成。以衍射光栅为色散元件组成的摄谱仪和单色仪是物质光谱分析的基本仪器之一。光栅衍射原理也是晶体X射线结构分析和近代频谱分析及光学信息处理的基础。 添加评论
x射线衍射仪工作原理x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为x射线的空间衍射光栅,即一束x射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。以上是1912年德国物理学家劳厄(m.von laue)提出的一个重要科学预见,随即被实验所证实。1913年,英国物理学家布拉格父子(w.h.bragg,w.l.bragg)在劳厄发现的基础上,不仅成功的测定了nacl,kcl等晶体结构,还提出了作为晶体衍射基础的著名公式——布拉格方程:2dsinθ=nλ。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在xrd图谱上就是具有不同的衍射强度的衍射峰。对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的xrd图谱为一些漫散射馒头峰。x射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析。广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域。

文章TAG:x射线衍射仪  
下一篇