世界上最聪明的机器学习算法是什么?

首先,先理解人工智能、机器学习、深度学习三者的关系人工智能是机器学习的首要范畴。机器学习是深度学习的首要范畴,也即深度学习是机器学习的一个子集,机器学习是人工智能的一个子集。近年来这个领域的兴起应该归功于深度学习,人工智能和机器学习这个领域近年来一直在解决一系列有趣的问题,比如自动驾驶、人脸识别等。人工智能有三个层次,分别是:(1)计算智能:高效快速地求解出结果,包括遗传算法、群体智能(蚁群、粒子群)、模拟退火等;(2)感知智能:让计算机看得见,听得到,包括图像识别、语音识别等;(3)认知智能:最高一个层次的人工智能,包括自然语言处理和机器人等。

机器学习是实现人工智能的一种重要方法机器学习就是用算法真正解析数据,不断学习,然后对世界中发生的事做出判断和预测。此时,研究人员不会亲手编写软件、确定特殊指令集、然后让程序完成特殊任务,相反,研究人员会用大量数据和算法“训练”机器,让机器学会如何执行任务。按照学习的方法,可以将机器学习分为四类:监督学习、无监督学习、半监督学习和强化学习其中:监督学习针对有标签数据集,它通过学习出一个模型(其实就是一个函数)来拟合数据,按照模型(函数)的输出结果是否离散又可以分为两类,分别是:(1)输出结果为离散值,则为分类问题(常见的分类算法:KNN、贝叶斯分类器、决策树、SVM、神经网络、GBDT、随机森林等);(2)输出结果为连续值,则为回归问题(有线性回归和逻辑回归两种)。

而无监督学习针对没有标签的数据集,它将样本按照距离划分成类簇,使得类内相似性最大,类间相似性最小。通过观察聚类结果,我们可以得到数据集的分布情况,为进一步分析提供支撑。常见的聚类算法有K-means、高斯混合模型和LDA。因机器学习需要人为的参与,那么有没有一种让机器学习的算法,那就是深度学习深度学习:实现机器学习的技术深度学习是机器学习中一种基于对数据进行表征学习的方法。

观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。而使用某些特定的表示方法更容易从实例中学习任务(例如,人脸识别或面部表情识别)。深度学习的好处是用非监督式或半监督式的特征学习和分层特征提取高效算法来替代手工获取特征。综上所述,深度学习是人工智能后续的发展方向,但是实现深度学习需要较多的数据和计算能力来训练模型,并非所有场景都适用,所以,在实际情况下,不要最求什么最聪明的算法,应该是追求最合适当前场景的算法。

有没有必要把机器学习算法自己实现一遍?

如果你是个搬砖的,那不需要;如果你是个前端开发工程师,那不需要;如果你是后端开发工程师,那也不需要;如果你做人工智能或ai的应用集成工作,那实现一遍最好,不实现一遍多少影响工作效率;如果你搞数据标注一类工作的,那也不需要;如果你做ai算法的,那必要性比较大;如果你做ai方向科研的,这应该是基本功吧。

机器学习初学者需要了解的基本算法有哪些

你应该使用哪种机器学习算法?这在很大程度上依赖于可用数据的性质和数量以及每一个特定用例中你的训练目标。不要使用最复杂的算法,除非其结果值得付出昂贵的开销和资源。这里给出了一些最常见的算法,按使用简单程度排序。1. 决策树(Decision Tree):在进行逐步应答过程中,典型的决策树分析会使用分层变量或决策节点,例如,可将一个给定用户分类成信用可靠或不可靠。

优点:擅长对人、地点、事物的一系列不同特征、品质、特性进行评估场景举例:基于规则的信用评估、赛马结果预测2. 支持向量机(Support Vector Machine):基于超平面(hyperplane),支持向量机可以对数据群进行分类。优点:支持向量机擅长在变量 X 与其它变量之间进行二元分类操作,无论其关系是否是线性的场景举例:新闻分类、手写识别。

3. 回归(Regression):回归可以勾画出因变量与一个或多个因变量之间的状态关系。在这个例子中,将垃圾邮件和非垃圾邮件进行了区分。优点:回归可用于识别变量之间的连续关系,即便这个关系不是非常明显场景举例:路面交通流量分析、邮件过滤4. 朴素贝叶斯分类(Naive Bayes Classification):朴素贝叶斯分类器用于计算可能条件的分支概率。

每个独立的特征都是「朴素」或条件独立的,因此它们不会影响别的对象。例如,在一个装有共 5 个黄色和红色小球的罐子里,连续拿到两个黄色小球的概率是多少?从图中最上方分支可见,前后抓取两个黄色小球的概率为 1/10。朴素贝叶斯分类器可以计算多个特征的联合条件概率。优点:对于在小数据集上有显著特征的相关对象,朴素贝叶斯方法可对其进行快速分类场景举例:情感分析、消费者分类5. 隐马尔可夫模型(Hidden Markov model):显马尔可夫过程是完全确定性的——一个给定的状态经常会伴随另一个状态。

交通信号灯就是一个例子。相反,隐马尔可夫模型通过分析可见数据来计算隐藏状态的发生。随后,借助隐藏状态分析,隐马尔可夫模型可以估计可能的未来观察模式。在本例中,高或低气压的概率(这是隐藏状态)可用于预测晴天、雨天、多云天的概率。优点:容许数据的变化性,适用于识别(recognition)和预测操作场景举例:面部表情分析、气象预测6. 随机森林(Random forest):随机森林算法通过使用多个带有随机选取的数据子集的树(tree)改善了决策树的精确性。

本例在基因表达层面上考察了大量与乳腺癌复发相关的基因,并计算出复发风险。优点:随机森林方法被证明对大规模数据集和存在大量且有时不相关特征的项(item)来说很有用场景举例:用户流失分析、风险评估7. 循环神经网络(Recurrent neural network):在任意神经网络中,每个神经元都通过 1 个或多个隐藏层来将很多输入转换成单个输出。

循环神经网络(RNN)会将值进一步逐层传递,让逐层学习成为可能。换句话说,RNN 存在某种形式的记忆,允许先前的输出去影响后面的输入。优点:循环神经网络在存在大量有序信息时具有预测能力场景举例:图像分类与字幕添加、政治情感分析8. 长短期记忆(Long short-term memory,LSTM)与门控循环单元神经网络(gated recurrent unit nerual network):早期的 RNN 形式是会存在损耗的。

尽管这些早期循环神经网络只允许留存少量的早期信息,新近的长短期记忆(LSTM)与门控循环单元(GRU)神经网络都有长期与短期的记忆。换句话说,这些新近的 RNN 拥有更好的控制记忆的能力,允许保留早先的值或是当有必要处理很多系列步骤时重置这些值,这避免了「梯度衰减」或逐层传递的值的最终 degradation。

LSTM 与 GRU 网络使得我们可以使用被称为「门(gate)」的记忆模块或结构来控制记忆,这种门可以在合适的时候传递或重置值。优点:长短期记忆和门控循环单元神经网络具备与其它循环神经网络一样的优点,但因为它们有更好的记忆能力,所以更常被使用场景举例:自然语言处理、翻译9. 卷积神经网络(convolutional neural network):卷积是指来自后续层的权重的融合,可用于标记输出层。

人工智能、机器学习、深度学习的关系是什么?

人工智能、机器学习、深度学习这三者之间的关系可以用通过下面的一张图来描述,实际上它们之间是子集和父集的关系。人工智能(Artificial Intelligence),简称AI,是一种计算机系统,经过训练后可以感知环境、做出决策及采取行动。它是研究和开发用于延伸和扩展人的智能的一种理论、方法、技术及应用的一门学科,其研究领域主要包括机器人、语言识别、图像识别、自然语言处理、专家系统以及其它相关领域等。

机器学习(Machine Learning),是人工智能的一个分支,通过学习已知数据来构建模型并对未知数据进行预测的技术。通常它表示的是以贝叶斯法、决策树、分类、回归、EM算法、支持向量机等技术为基础的传统学习方法,根据学习过程的特点又可分为监督学习和无监督学习。深度学习(Deep Learning),机器学习的一个分支,它通过研究人类大脑的神经元的工作机制,用计算机模拟并建立神经网络模型,然后再通过数据对它进行训练,目前最常见的是应用与计算机视觉领域的卷积神经网络(CNN)以及应用与语音识别领域的递归神经网络(RNN)等。

人工智能、机器学习、深度学习三者之间的关系?

人工智能、机器学习、深度学习三者之间的关系?有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分。事实上,这些说法都是正确的,这一切都取决于你所指的是哪一种人工智能。例如,此前Google DeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。在媒体描述DeepMind胜利的时候,就曾将人工智能(AI)、机器学习(Machine Learning)和深度学习(Deep Learning)都提到了。

这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。要解释这三者之间的关系和应用,最简单的方法就是画一个同心圆,如下图,人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,也是当今人工智能大爆炸的核心驱动。从概念的提出到走向繁荣1956年,几位计算机科学家相聚在达特茅斯会议(Dartmouth Conferences),提出了“人工智能”的概念。

其后,人工智能就一直萦绕在人们的脑海之中,并在科研实验室中慢慢孵化成形。在之后的几十年,人工智能一直在不停地两极反转,既有人把其称作人类文明耀眼的未来;也有人把其当做是技术疯子们的妄想,嗤之以鼻。坦白说,直到2012年之前,这两种声音都还同时存在。过去几年,尤其是自2015年以来,人工智能开始大爆发。

很大一部分原因是由于GPU的广泛应用,使得并行计算变得更快、更便宜、更有效。当然,无限拓展的存储能力和骤然爆发的数据洪流(大数据),也使得图像数据、文本数据、交易数据、映射数据全面海量爆发。让我们慢慢梳理一下计算机科学家们是如何将人工智能从最早的一点点星星之火,发展到能够支撑那些每天被数亿用户使用的实际应用的。

人工智能(Artificial Intelligence)——为机器赋予人的智能King me:扮演跳棋玩家的计算机程序,是最早的人工智能实例之一,在20世纪50年代激起了人工智能的早期浪潮。早在1956年夏天的那次会议上,人工智能的先驱们就梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器,既我们所谓的“强人工智能”(General AI)。

这是一个无所不能的机器,它有着我们所有的感知(甚至比人更多),以及我们所有的理性,可以像我们一样思考。人们在电影里也总是看到这样的机器人:像星球大战中友好的C-3PO;或者是邪恶的终结者。强人工智能目前还仅存在于电影和科幻小说中,原因很简单,因为我们还没法实现它们,至少目前还不行。我们目前能实现的,一般被称为“弱人工智能”(Narrow AI)。

弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类;或者Facebook的人脸识别。这些都是弱人工智能在实践中的例子。这些技术实现了人类智能中某些特定部分。但它们是如何实现的?这种智能是从何而来?其答案就是同心圆中的第二层,机器学习。机器学习—— 一种实现人工智能的方法Spam free diet:机器学习能够帮助你的收件箱(相对地)摆脱垃圾邮件的困扰。

机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务的人工编码程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。机器学习直接来源于早期的人工智能领域。传统算法包括决策树学习、推导逻辑规划、聚类、强化学习和贝叶斯网络等等。

众所周知,我们现在还没有实现强人工智能,而早期机器学习方法甚至连弱人工智能都无法实现。机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“S-T-O-P”。

使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。这个结果还算不错,但还算不上是那种能让人为之一振的成功,特别是遇到云雾天,标志牌变得不是那么清晰可见,又或者被树遮挡一部分,算法就难以成功了。这也是为什么此前很长一段时间中,计算机视觉的性能一直无法接近到人类的水平。

它太僵化,并且太容易出现错误。随着时间的推进,学习算法的发展改变了一切。深度学习——一种实现机器学习的技术Herding cats:从YouTube视频中挑选猫的图像是深度学习的第一个突破性演示之一。人工神经网络(Artificial Neural Networks)是早期机器学习中的一个重要的算法,历经了数十年的推演。

神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。

每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加权决定。我们仍以停止(Stop)标志牌为例。将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车一样的红颜色、鲜明的字母、交通标志的典型尺寸和静止不动运动特性等等。神经网络的任务就是给出结论,它到底是不是一个停止标志牌。

神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。此前,这样的神经网络并没得到为人工智能圈的认可。然而,事实上在人工智能出现的早期,神经网络就已经存在了,只是神经网络对于“智能”的贡献微乎其微。

其主要原因是因为即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。不过,还是有一些虔诚的研究团队(例如:多伦多大学的Geoffrey Hinton)坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。我们回过头来看这个停止标志识别的例子。

神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否是雾天、晴天还是雨天,每次都能得到正确的结果。只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;或者在Facebook的应用里,神经网络学习了如何识别你妈妈的脸;又或者是2012年吴恩达(Andrew Ng)教授在Google实现了神经网络学习到猫的样子等等。

吴恩达教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在他的示例中,数据是一千万YouTube视频中的图像。吴教授为深度学习(deep learning)加入了“深度”(deep)。这里的“深度”所指的,正是神经网络中众多的层。现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,再到识别核磁共振成像中的肿瘤。

Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。深度学习,给人工智能以璀璨的未来深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。如今,深度学习已经能够实现各种任务,几乎使得所有的机器辅助功能都变为可能。

机器学习和深度学习的算法岗是不是过饱和了?是不是该转开发去了?

今年从事算法设计岗位的毕业生在就业过程中经历了更多的考验,原因是整个行业对于算法岗位的要求也在不断提高,单纯的掌握基本算法设计的毕业生感受到了较为明显的就业压力。但是就此说明算法设计岗位饱和还为时过早,因为目前市场上依然有不少算法岗位的需求。从行业结构来说,目前算法设计岗位应该还有较大的发展空间,原因是在产业互联网发展阶段,尤其是发展的初期,针对大量传统行业的应用,算法设计依然是一个有较多需求的岗位,所以说算法设计岗位还没有达到饱和的阶段。

但是毫无疑问的是,目前算法设计岗位的要求正在不断提高,具备更多实践能力的毕业生将获得更多的机会。相对于算法设计岗位来说,开发岗位的需求量明显要多一些,因为大量的具体需求都需要通过开发岗来完成。对于开发岗位来说,一部分开发属于研发级岗位,一部分开发属于应用级岗位,对于研发级岗位来说,掌握算法知识是基本的要求,所以对于算法设计的毕业生来说,从事研发级开发岗位也是一个不错的选择。

从职业生命周期来看,算法设计岗位与研发级开发岗位的职业生命周期往往都比较长,但是普通的应用级程序员则有职业生命周期方面的顾虑,频繁的技术更新以及繁重的开发任务,往往使得应用级程序员过早的结束程序员生涯。目前,不少公司对于算法设计和算法实现进行了整合,单纯的算法设计岗位目前并不是很多,所以对于算法设计的同学来说,也应该加强自己的编码能力。


文章TAG:算法  汇总  几种  机器  分类  
下一篇