2道条纹引发的.......基于薛定谔方程给出的轨道角动量奇数个空间取向让物理学家们对实验的结果到底验证了什么感到了困惑...........。根据施特恩-格拉赫的实验构想:银原子核的外部有47个电子,其中有46个是成对出现的,由于量子态的互斥原理(也叫泡利不相容原理),它们的角动量会相互抵消,只有最外面的一个电子的绕核旋转会给银原子的角动量作出贡献。

然而,条纹为2道,偶数,这是以薛定谔方程为基础的新的空间量子化理论所不能解释的(奇数道条纹)。随着2l 1个磁量子数取值,也就是薛定谔方程为基础的新的空间量子化理论被正常塞曼效应、顺磁共振实验效应所验证,银原子的2道条纹显得越发的奇怪,是不是施特恩-格拉赫实验出错了呢?直到1927年,弗莱塞(Fraser)发现银、氢和钠原子的轨道角动量为零,真相才逐步浮出水面。

因为0轨道角动量是玻尔理论所不允许的(前面说的伏笔之一),因为它规定l角量子数至少为1,而薛定谔方程求解的角动量量子数则允许l值为0,也就是说,其电子处于s基态,角动量为0。(上图左边第一列,为主量子数n从1到5条件下,处于基态,即S态,l角量子数为0条件下的氢原子电子波函数仿真图)这样,既然薛定谔方程没错,而施特恩-格拉赫实验也没错,那么,这只能是一个新的物理现象了,对电子新的特性的假说(自旋)的提出也就变的顺理成章了!---------------------------------------------------------------------------------------------------------------有了前面关于量子化、空间取向、角动量、主量子数、角量子数、磁量子数等关键概念的铺垫,现在,开始讲自旋的属性。

1、关于是否真的在旋转,科学家一开始和你我想的一样!有时候时机到了,得敢想,理论物理的发展史中有着太多这样的例子了。1924年,沃尔夫冈·泡利第一个提出电子态是“一个二值的非经典隐藏旋转”。接着,1925年,乌伦贝克和古德斯密特提出“自旋”(荷兰的拉尔夫提出的更早,但被泡利给怼了),他们猜想,银原子与外磁场发生作用的角动量分量(投影)不是由电子绕核产生的,而是电子本身的自转造成的!对!你没看错,自旋就是这样被物理学家们为解释实验结果而引入的(包括解释反常赛曼效应和碱金属的双线结构),之所以叫起名叫“自旋”,就是因为,一开始提出来的时候,他们同你和我的脑子一样,认为电子是在进行自转的,因为它们确实有角动量和磁矩,特别是磁矩是真真切切的表现在宏观世界中的。

而根据经典力学,通过自转产生角动量意味着电子就会有半径(内部结构)、电荷分布和转速。 如上图,按照这个思路,把电子考虑为一个均质实心球体,电荷与质量平均分布,则根据计算可得,这个球体旋转的速度约为912倍光速,这是一个大的吓人的速度,这显然也违反了相对论。所以,一开始泡利才会严重的反对。然而,如上图,加州理工学院的一篇论文指出:用经典半径(上面的结果中,电子的半径使用的数据为5乘10的-16次方米)进行这样的计算本身就没有脱离经典,因为考虑电子时,其位置与动量的不确定性效应已经十分明显,电子的质量和电荷将会以一定的密度分布在其周围的狄拉克场中运动,因而不会违反相对论。

换个好理解的说法,因为电子的量子效应,主要是物质波(波函数)效应已经十分明显,所以,你不能简单的把电子想像成好好的,有着明显边界的小球在那旋转,它的质量(能量)和电荷是像一团大大的棉花糖在旋转,而非一个均质实心球。(实际上,是2团棉花糖,后面我们会讲到)不管怎样,这种说法,让我们对于想象电子真的在那旋转也变得不那么禁忌了!更进一步,作为普通人,我们大可以认为它们真的在那里旋转,因为其磁矩,也就是与外磁场的相互作用力是真实存在的,而这,你可以在宏观世界中找到类似物:磁陀螺或环形电流。

2、由电子自旋产生的磁矩效应要加倍(乘2)在这一点上,自旋确实显示出了它的特殊之处,如上图左侧的公式,电子的轨道角动量与磁矩关系式是由经典的电磁学推导出来的。比较左右,由自旋产生的磁矩是轨道磁矩的2倍,也就是说,相同的角动量、电荷、质量,自旋带来的磁矩效应却是不一样的。当然,更准确的数字应该是:2.002 319 304 362 56(35),这是由实验测定的,整数2是狄拉克方程(可以理解为薛定谔波动方程的相对论版本,描述了电子、夸克等自旋为1/2的粒子的宇称对称性)所给出的。

 4/7   首页 上一页 2 3 4 5 6 7 下一页 尾页

文章TAG:我爱罗  V10  尊享  爱罗  属性  
下一篇