所以这款手机可以看出还是有很多妥协,但更多是一种无奈,华为这种做法也是想为移动终端续命,跟4G版的P50发布有异曲同工之妙,也是想办法保住手机终端。不管怎么说,中芯国际目前能生产一点麒麟710A,而华为又能消化一点,那这合作还得继续下去,一方面可以为华为供电芯片,同时也能为中芯国际添加点收入,促进工艺进步,属于难兄难弟的双赢组合。

19年4月10日之前黑洞图片是真实的黑洞照片还是想象图?

2019年4月10日,世界上第一张黑洞照片诞生了。这个工程称为“事件视界望远镜EHT”,它凝聚了无数科学家的心血。拍摄过程中,人们调集了世界上八台射电望远镜,数据处理经过两年之久。这当然是一张真实的照片。黑洞连光都能吸进去,为什么还能拍照片呢?拍一张照片为什么要花费2年的时间呢?读一读本文,你将会了解这些内容。

瑞利判据首先,需要给大家介绍一下望远镜的基本原理。要看清远处的物体发出的光需要两个条件:足够的光强和足够大的角度。物体发出的光线经过眼角膜和晶状体折射后,会在视网膜上成像。如果光强太弱,进入眼睛的光子不够,就不足以使视神经产生反应,所以我们首先需要将遥远物体发出的光进行收集和加强,这就需要望远镜。其次,物体不同部位发出的光会彼此成一定角度,在视网膜上成像也不是两个点,而是两个光斑,称为爱里斑,这是由于衍射原因造成的。

假如两条光线的夹角太小,光斑距离就会特别近,如果它们的圆心距离小于半径,我们的眼睛就无法区分它们了。看起来两条光纤重合,发光物体就变成了一个点。英国卡文迪许实验室主任、第三代瑞利男爵仔细研究了这个问题。他指出:只有两条光线之间的夹角θ与衍射孔径D和光的波长λ满足入下关系时,光线才是可分辨的这个关系称为瑞利判据。

例如:人的眼睛对550nm的绿光最为敏感,虹膜直径大约5mm,这样一来人的眼睛最小可分辨角为如果光线夹角小于这个值,我们就无法分辨它们。遥远的星星不同部位发出的光进入眼睛时夹角太小,所以大部分的星星看起来都是一个点。为了增大这个角度从而看清远处物体的结构,我们也需要望远镜。望远镜几百年前,人类就开始制作望远镜了。

比如,伽利略就制作了一台可以放大33倍的望远镜,并用它观察到了月球表面的环形山和木星的卫星。伽利略的望远镜使用了一个凸透镜和一个凹透镜。凸透镜的焦距长,凹透镜的焦距短,并让二者共焦点。平行光线进入物镜后向焦点汇聚,但是到达焦点之前被凹透镜恢复成平行光,实现了宽平行光变为窄平行光,光线被加强了。同时,如果入射光原本相对于眼睛的夹角比较小,经过望远镜后角度会被放大,于是人的眼睛就可以分辨了。

天文学家开普勒也发明了自己的望远镜,开普勒式望远镜使用的是两个凸透镜,也让他们共焦点,它也能够实现光线的加强和角度的放大。所不同的是,开普勒式望远镜所成的是倒像,但是这对于天文观测来讲并没有带来太大的麻烦。折射式望远镜的缺点在于存在视差,有时候会模糊不清。为了克服这个缺点,牛顿发明了反射式望远镜。它通过一个凹形反光面收集光线,再利用平面镜反射和凸透镜会聚实现光强和角度的放大。

不过,无论是折射式望远镜,还是反射式望远镜,都存在一个问题:它的观察通过肉眼和可见光进行,可见光的波长短,容易被大气散射,到达地面上的光微弱而不稳定。如何解决这个问题呢?人们有两种方法:第一,既然大气散射造成了这个问题,那么就到大气外面装一个望远镜好了。于是哈勃望远镜问世了。人们躲开了大气的散射,看到了许多从未见到的景象。

第二,既然可见光会被大气散射,我们还可以使用波长较长的红外线或微波进行观测,它们更容易穿透大气层。于是,人们就发明了射电望远镜,它的基本原理与牛顿的反射式望远镜类似,只不过使用的电磁波是红外或微波。宇宙中许多物质发光并不是可见光,只有通过射电望远镜才能观察到它们。甚长基线干涉技术VLBI无论是眼睛、光学望远镜还是射电望远镜,都要满足瑞利判据。

而且,根据瑞利判据,最小分辨角θ=1.22λ/D,射电望远镜使用的电磁波波长λ比可见光更大,此时必须增大它的口径D,才能分辨出很小的角度。所以世界各国都在争向建设大口径的射电望远镜。例如中国贵州建设的500米口径球面射电望远镜(FAST),工作波长在0.1m左右,口径达到了500米。这么大面积的射电望远镜可以汇聚宇宙中微弱的电磁波,同时也可以分辨更小的角度。

 3/5   首页 上一页 1 2 3 4 5 下一页 尾页

文章TAG:造梦  西游  之石  上架  版本  
下一篇